Informatics-based design of polyaniline-carbon nanotube thermoelectric nanocomposite using ANN and GA DOI
Dariush Ebrahimibagha, Mallar Ray, Shubhabrata Datta

и другие.

Functional Composites and Structures, Год журнала: 2024, Номер 6(4), С. 045008 - 045008

Опубликована: Ноя. 5, 2024

Abstract Conducting polymer and carbon nanotube (CNT) based nanocomposites have emerged as prospective thermoelectric (TE) materials due to their potential application in flexible electronics. Non-conventional charge heat transport these nanocomposites, presents the possibility enhance TE conversion efficiency, given by Z T . However, highly non-linear complex association of structure composition with overall properties hindered development any general strategy develop high nanocomposites. Here, we implement artificial neural network genetic algorithm data driven models followed optimization design efficiency on CNT dispersed polyaniline (PANI) matrix. Our suggest that concentration plays most crucial role determining . Non-dominated Pareto optimal solutions consisting different combinations variables are obtained multi-objective optimization. Although a range span over regions search space, note longer CNTs boost Seebeck coefficient ( S ) electrical conductivity ( σ ) , smaller length lowers thermal k ), while higher diameter increase The results provide guideline for developing CNT-PANI enhanced figure merit.

Язык: Английский

Skutterudites as sustainable thermoelectric material- A critical review DOI

Klinton Brito K,

Shobana Priyanka D,

M. Srinivasan

и другие.

Solid State Sciences, Год журнала: 2024, Номер 157, С. 107721 - 107721

Опубликована: Окт. 10, 2024

Язык: Английский

Процитировано

1

Evolution of thermoelectric transport properties of Sb2Te3–Sb2Se3 solid-solution alloys depending on phase formation behavior DOI

Joontae Park,

Weon Ho Shin, Youngwoo Kim

и другие.

Materials Science in Semiconductor Processing, Год журнала: 2024, Номер 182, С. 108689 - 108689

Опубликована: Июль 11, 2024

Язык: Английский

Процитировано

0

Enhanced thermoelectric properties of Se-doped quasi-one-dimensional van der Waals crystal Ta2PdS6 DOI

Tongwei Ren,

Sanyin Qu, Pengfei Qiu

и другие.

Applied Physics Letters, Год журнала: 2024, Номер 125(9)

Опубликована: Авг. 26, 2024

Recently, quasi-one-dimensional van der Waals crystal Ta2PdS6 has been reported as a promising thermoelectric material with an extraordinarily high power factor. However, element doping to tune the properties not studied yet. Here, we systematically investigated effect of Se on phase composition, charge transport and performance Se-doped Ta2Pd(S1−xSex)6 (x = 0, 0.02, 0.05, 0.07) polycrystalline bulk materials. Upon at S sites increase carrier concentration mobility, electrical conductivity Ta2Pd(S0.93Se0.07)6 is dramatically enhanced, while slightly reduced, yielding significantly improved factor compared that pristine Ta2PdS6. Consequently, exhibits peak ZT 0.29 700 K when content x 0.07, which more than twice

Язык: Английский

Процитировано

0

Colossal magnetoresistance and Fermi surface topology in the layered Zintl-phase compound YbAl2Si2 DOI
Fang Tang, Yang Chen, Xunqing Yin

и другие.

Physical review. B./Physical review. B, Год журнала: 2024, Номер 110(17)

Опубликована: Ноя. 5, 2024

Язык: Английский

Процитировано

0

Informatics-based design of polyaniline-carbon nanotube thermoelectric nanocomposite using ANN and GA DOI
Dariush Ebrahimibagha, Mallar Ray, Shubhabrata Datta

и другие.

Functional Composites and Structures, Год журнала: 2024, Номер 6(4), С. 045008 - 045008

Опубликована: Ноя. 5, 2024

Abstract Conducting polymer and carbon nanotube (CNT) based nanocomposites have emerged as prospective thermoelectric (TE) materials due to their potential application in flexible electronics. Non-conventional charge heat transport these nanocomposites, presents the possibility enhance TE conversion efficiency, given by Z T . However, highly non-linear complex association of structure composition with overall properties hindered development any general strategy develop high nanocomposites. Here, we implement artificial neural network genetic algorithm data driven models followed optimization design efficiency on CNT dispersed polyaniline (PANI) matrix. Our suggest that concentration plays most crucial role determining . Non-dominated Pareto optimal solutions consisting different combinations variables are obtained multi-objective optimization. Although a range span over regions search space, note longer CNTs boost Seebeck coefficient ( S ) electrical conductivity ( σ ) , smaller length lowers thermal k ), while higher diameter increase The results provide guideline for developing CNT-PANI enhanced figure merit.

Язык: Английский

Процитировано

0