Fine-tuned depth-augmented U-Net for enhanced semantic segmentation in indoor autonomous vision systems DOI
Hoang Ngoc Tran, Thu A. N. Le,

Nghi V. Nguyen

и другие.

Journal of Real-Time Image Processing, Год журнала: 2024, Номер 22(1)

Опубликована: Дек. 6, 2024

Язык: Английский

Enhancing Semantic Scene Segmentation for Indoor Autonomous Systems Using Advanced Attention-Supported Improved UNet DOI
Hoang Ngoc Tran,

Nghi Nguyen Vinh,

Nhi Quynh Phan Le

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Июль 2, 2024

Abstract This paper introduces EFFB7-UNet, an advanced semantic segmentation framework tailored for Indoor Autonomous Vision Systems (IAVSs) utilizing the U-Net architecture. The employs EfficientNetB4 as its encoder, significantly enhancing feature extraction. It integrates a spatial and channel Squeeze-and-Excitation (scSE) attention block, emphasizing critical areas features to refine outcomes. Comprehensive evaluations using NYUv2 Dataset various augmented datasets were conducted. study systematically compares EFFB7-UNet's performance with multiple encoders, including ResNet50, ResNet101, MobileNet V2, VGG16, VGG19, EfficientNets B0-B6. findings reveal that EFFB7-UNet not only surpasses these configurations in terms of accuracy but also highlights effectiveness scSE block achieving superior results. Without depth information, achieves 12\% improvement mean Intersection over Union (mIOU). notable enhancement adaptability across different domains, implying substantial progress reliability Intelligent (IAVS) technologies.

Язык: Английский

Процитировано

0

Fine-tuned depth-augmented U-Net for enhanced semantic segmentation in indoor autonomous vision systems DOI
Hoang Ngoc Tran, Thu A. N. Le,

Nghi V. Nguyen

и другие.

Journal of Real-Time Image Processing, Год журнала: 2024, Номер 22(1)

Опубликована: Дек. 6, 2024

Язык: Английский

Процитировано

0