Advanced data augmentation techniques coupled with enhanced particle swarm optimization for predicting total phosphorus concentrations in limited transmission spectra samples: A case study on the Yangtze River DOI
Guohao Zhang, Cailing Wang, Hongwei Wang

и другие.

Journal of Water Process Engineering, Год журнала: 2024, Номер 68, С. 106547 - 106547

Опубликована: Ноя. 15, 2024

Язык: Английский

Incremental bearing fault diagnosis method under imbalanced sample conditions DOI

Gezhi Liu,

Lifeng Wu

Computers & Industrial Engineering, Год журнала: 2024, Номер 192, С. 110203 - 110203

Опубликована: Май 14, 2024

Язык: Английский

Процитировано

13

A hybrid load forecasting system based on data augmentation and ensemble learning under limited feature availability DOI

Qing Yang,

Zhirui Tian

Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 125567 - 125567

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

7

Big data for furniture intelligent manufacturing: conceptual framework, technologies, applications, and challenges DOI

Xinyi Yue,

Xianqing Xiong,

Xiutong Xu

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 132(11-12), С. 5231 - 5247

Опубликована: Май 8, 2024

Язык: Английский

Процитировано

6

A back propagation neural network based low frequency clustering man-hour prediction method for digital manufacturing DOI

Feng Xiang,

Jiangpeng Shi,

Meng Zhang

и другие.

International Journal of Computer Integrated Manufacturing, Год журнала: 2025, Номер unknown, С. 1 - 19

Опубликована: Апрель 26, 2025

Язык: Английский

Процитировано

0

An explainable multi-layer graph attention network for product completion time prediction in aircraft final assembly lines DOI
Bolin Chen, Jie Zhang, Jun Xiong

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 1053 - 1071

Опубликована: Май 13, 2025

Язык: Английский

Процитировано

0

Deep reinforcement learning for solving car resequencing with selectivity banks in automotive assembly shops DOI
Yuzhe Huang, Gaocai Fu, Buyun Sheng

и другие.

International Journal of Production Research, Год журнала: 2024, Номер unknown, С. 1 - 22

Опубликована: Сен. 24, 2024

Язык: Английский

Процитировано

2

L2-SSA-LSTM Prediction Model of Steering Drilling Wellbore Trajectory DOI Creative Commons
Yi Gao,

Na Wang,

Yihao Ma

и другие.

IEEE Access, Год журнала: 2023, Номер 12, С. 450 - 461

Опубликована: Дек. 27, 2023

The high-speed vibration rotation of the drill bit during drilling causes logging tool to be damaged or distorted, resulting in inaccurate lost data collection. Traditional prediction methods such as dynamic modeling and geological have problems incomplete difficult modeling, which cannot meet accuracy stability requirements wellbore trajectory prediction. long short-term memory neural network (LSTM) for predicting time series can achieve accurate prediction, but there are difficulty adjusting hyperparameters LSTM model, slow convergence speed, easy overfitting. This paper absorbs advantages algorithm, ridge regression (L2 regularization), sparrow optimization algorithm (SSA) machine learning proposes a well model steerable based on L2 regularization SSA optimized (L2-SSA-LSTM). takes hyperparameter parameter goal adds prevent overfitting complete experiment was conducted using measured sets from directional two different oilfields. results show that compared with back propagation (BP), consolidated gated recurrent unit (CMGRU), dual-thread (DTGRU), Attention-based Spatiotemporal Graph Recurrent Neural Network (ASTG-RNN), LSTM, L2-SSA-LSTM has significantly higher trajectories than other models better predictive ability.

Язык: Английский

Процитировано

3

Advanced data augmentation techniques coupled with enhanced particle swarm optimization for predicting total phosphorus concentrations in limited transmission spectra samples: A case study on the Yangtze River DOI
Guohao Zhang, Cailing Wang, Hongwei Wang

и другие.

Journal of Water Process Engineering, Год журнала: 2024, Номер 68, С. 106547 - 106547

Опубликована: Ноя. 15, 2024

Язык: Английский

Процитировано

0