Predicción de la fertilidad del suelo mediante aprendizaje automático en la provincia de Alto Amazonas, Perú DOI Creative Commons
Cesar O. Arévalo-Hernández, Enrique Arévalo‐Gardini, Luis Arévalo

и другие.

Revista Peruana de Investigación Agropecuaria, Год журнала: 2023, Номер 3(2), С. e63 - e63

Опубликована: Окт. 10, 2023

El objetivo del trabajo fue predecir la fertilidad suelo en provincia de Alto Amazonas con el uso imágenes satelitales y técnicas aprendizaje automático. estudio se ubicó Perú. Se realizaron muestreos suelos toda provincia, totalizando 100 muestras. Posteriormente análisis físicos (textura) químicos suelo. Las obtuvieron USGS los índices vegetación calcularon base estas imágenes. Finalmente, utilizó descriptivo modelado automático utilizando 06 algoritmos (GLM, CUBIST, KKNN, SVM, Random Forest NN) que seleccionaron función su R2 RMSE. En este observamos mayoría tienen bajos pH, P, Mg, K alta acidez. También lograron obtener buenas predicciones para Ca, Mg CIC observó algoritmo más exitoso Forest. Sin embargo, Al, Cubist tuvo mejores resultados. Este es uno primeros trabajos utiliza Amazonía peruana espera pueda servir como futuros proyectos.

Estimating forest aboveground carbon sink based on landsat time series and its response to climate change DOI Creative Commons
Kun Yang, Kai Luo, Jialong Zhang

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 2, 2025

Accurately estimating forest carbon sink and exploring their climate-driven mechanisms are critical to achieving neutrality sustainable development. Fewer studies have used machine learning-based dynamic models estimate sink. The in Shangri-La yet be explored. In this study, a genetic algorithm (GA) was optimize the parameters of random (RF) establish intensity (CSI) Pinus densata analyze combined effects multi-climatic factors on CSI. We found that (1) GA can effectively improve estimation accuracy RF, R2 improved by up 34.8%, optimal GA-RF model is 0.83. (2) CSI 0.45–0.72 t C·hm− 2 from 1987 2017. (3) Precipitation has most significant effect weak drive precipitation, temperature, surface solar radiation dominant for These results indicate large-scale long-term highland forest, providing feasible method. Clarifying driving mechanism will provide scientific basis resource management.

Язык: Английский

Процитировано

1

A Novel Model for Soil Organic Matter and Total Nitrogen Detection Based on Visible/Shortwave Near-Infrared Spectroscopy DOI Creative Commons
Jiangtao Qi, Peng Cheng,

Junbo Zhou

и другие.

Land, Год журнала: 2025, Номер 14(2), С. 329 - 329

Опубликована: Фев. 6, 2025

Soil organic matter (SOM) and total nitrogen (TN) are critical indicators for assessing soil fertility. Although laboratory chemical analysis methods can accurately measure their contents, these techniques time-consuming labor-intensive. Spectral technology, characterized by its high sensitivity convenience, has been increasingly integrated with machine learning algorithms nutrient monitoring. However, the process of spectral data remains complex requires further optimization simplicity efficiency to improve prediction accuracy. This study proposes a novel model enhance accuracy SOM TN predictions in northeast China’s black soil. Visible/Shortwave Near-Infrared Spectroscopy (Vis/SW-NIRS) within 350–1070 nm range were collected, preprocessed, dimensionality-reduced. The scores first nine principal components after partial least squares (PLS) dimensionality reduction selected as inputs, measured contents used outputs build back-propagation neural network (BPNN) model. results show that processed combination standard normal variate (SNV) multiple scattering correction (MSC) have best modeling performance. To stability this model, three named random search (RS), grid (GS), Bayesian (BO) introduced. demonstrate Vis/SW-NIRS provides reliable PLS-RS-BPNN achieving performance (R2 = 0.980 0.972, RMSE 1.004 0.006 TN, respectively). Compared traditional models such forests (RF), one-dimensional convolutional networks (1D-CNNs), extreme gradient boosting (XGBoost), proposed improves R2 0.164–0.344 predicting 0.257–0.314 respectively. These findings confirm potential technology effective tools prediction, offering valuable insights application sensing information.

Язык: Английский

Процитировано

1

Evaluating Airborne Hyperspectral Scanner (AHS) for the mapping of soil organic matter and clay in a Mediterranean forest ecosystem DOI Creative Commons
Francisco M. Canero, Víctor Rodríguez‐Galiano, Sabine Chabrillat

и другие.

CATENA, Год журнала: 2025, Номер 252, С. 108889 - 108889

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

0

Estimating and mapping tailings properties of the largest iron cluster in China for resource potential and reuse: A new perspective from interpretable CNN model and proposed spectral index based on hyperspectral satellite imagery DOI

Haimei Lei,

Nisha Bao, Mei Yu

и другие.

International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 139, С. 104512 - 104512

Опубликована: Апрель 7, 2025

Язык: Английский

Процитировано

0

Analytical Study of the Detection Model for Sulphate Saline Soil Based on Mid-Infrared Spectrometry DOI Creative Commons
H. Wei, Yong Huang,

Sining Li

и другие.

Chemosensors, Год журнала: 2025, Номер 13(5), С. 173 - 173

Опубликована: Май 8, 2025

High soil sulfate levels can inhibit crop growth and accelerate concrete infrastructure degradation, highlighting the critical importance of rapid accurate content determination. Nevertheless, conventional analytical techniques are laborious intricate, delays in processing may result alterations to material, owing oxidation. We recognized accuracy, reproducibility, non-invasiveness mid-infrared (MIR) spectroscopy as a straightforward technique for analysis. In this study, samples were collected from two depths (0–20 cm 20–40 cm) across three regions China: arid northwestern region, cold-temperate northeastern zone, subtropical southwestern region. One group was mixed with Na2SO4 (a readily soluble salt) at mass fractions ranging 0.1% 7%, while other FeS2 sulfide) 1% 70%. This study aimed develop spectroscopy-based method analyzing sulfide soil. Three chemometric methods evaluated: partial least squares regression (PLSR), principal component (PCR), multivariate linear (MLR). Results showed that MLR model provided superior predictive performance. For sodium sulfate-mixed exhibited best performance an Rp2 0.9535, RMSEP 0.0030, RPD 4.96, RPIQ 6.26. iron disulfide-mixed demonstrated results Rp2, RMSEP, RPD, values 0.9590, 0.042, 5.97, 10.94, respectively. 0–20 achieved 0.9848, 0.0025, 14.20, 25.48. Despite regional variations properties, successfully predicted contents soils diverse areas using combined appropriate methods. approach provides reliable technical support detection offers significant practical value assessment both agricultural production engineering construction.

Язык: Английский

Процитировано

0

LimeSoDa: A dataset collection for benchmarking of machine learning regressors in digital soil mapping DOI Creative Commons

Jonas Schmidinger,

Sebastian Vogel,

Viacheslav Barkov

и другие.

Geoderma, Год журнала: 2025, Номер 459, С. 117337 - 117337

Опубликована: Май 20, 2025

Язык: Английский

Процитировано

0

Multifactorial Analysis of Fluorescence Detection for Soil Total Petroleum Hydrocarbons Using Random Forest and Multiple Linear Regression DOI

Gaoyong Shi,

Ruifang Yang, Nanjing Zhao

и другие.

Chemometrics and Intelligent Laboratory Systems, Год журнала: 2025, Номер unknown, С. 105444 - 105444

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Mapping the carbon mitigation potential of photovoltaic development in the Gobi and desert regions of China DOI

Xin Lyu,

Xiaobing Li, Chenhao Zhang

и другие.

Energy, Год журнала: 2024, Номер 308, С. 132936 - 132936

Опубликована: Авг. 24, 2024

Язык: Английский

Процитировано

2

Estimating forest aboveground carbon sink based on Landsat time-series and its response to climate change DOI Creative Commons
Kun Yang, Kai Luo, Jialong Zhang

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Ноя. 22, 2024

Abstract Accurately estimating forest carbon sink and exploring their climate-driven mechanisms are essential for achieving neutrality sustainable development. Taking Pinus densata in Shangri-La as the research object, we established three Random Forest (RF) dynamic models based on Landsat time series ground data with 5-year interval variation, 10-year annual average variation. Then, Genetic Algorithm (GA) was applied to optimize parameters of RF establish GA-RF models, selected optimal model estimate intensity (CSI) densata. Finally, were explored by correlation analysis. We found that 1) variation had highest accuracy an R2 0.83. 2) The CSI 7.84–12.35×104 t C·hm− 2 from 1987 2017. 3) Precipitation greatest effect CSI. joint weak drive precipitation, temperature surface solar radiation most dominant form These results suggest can be used large-scale long-term estimation above-ground sinks highland forests. In addition, precipitation-led multifactorial synergistic driving mechanism will stabilize capacity long term.

Язык: Английский

Процитировано

0

Application of chemometrics based on digital image analysis for simultaneous determination of tartrazine and sunset yellow in food samples DOI
S. J. F. Hosseini, Taherh Heidari,

Ameneh Zendegi-Shiraz

и другие.

Food Chemistry, Год журнала: 2024, Номер 470, С. 142619 - 142619

Опубликована: Дек. 24, 2024

Язык: Английский

Процитировано

0