Journal of Hazardous Materials, Год журнала: 2024, Номер 485, С. 136804 - 136804
Опубликована: Дек. 5, 2024
Язык: Английский
Journal of Hazardous Materials, Год журнала: 2024, Номер 485, С. 136804 - 136804
Опубликована: Дек. 5, 2024
Язык: Английский
Environmental Science & Technology, Год журнала: 2025, Номер unknown
Опубликована: Янв. 16, 2025
Accurate prediction of chlorophyll-a (Chl-a) concentrations, a key indicator eutrophication, is essential for the sustainable management lake ecosystems. This study evaluated performance Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) traditional machine learning tools (RF, SVR, GPR) predicting time-series Chl-a concentrations in large lakes. Monthly remote-sensed data derived from Aqua-MODIS spanning September 2002 to April 2024 were used. The based on their forecasting capabilities March August 2024. KAN consistently outperformed others both test forecast (unseen data) phases demonstrated superior accuracy capturing trends, dynamic fluctuations, peak concentrations. Statistical evaluation using ranking metrics critical difference diagrams confirmed KAN's robust across diverse sites, further emphasizing its predictive power. Our findings suggest that KAN, which leverages KA representation theorem, offers improved handling nonlinearity long-term dependencies data, outperforming grounded universal approximation theorem algorithms.
Язык: Английский
Процитировано
9The Innovation Life, Год журнала: 2024, Номер unknown, С. 100105 - 100105
Опубликована: Янв. 1, 2024
<p>Artificial intelligence has had a profound impact on life sciences. This review discusses the application, challenges, and future development directions of artificial in various branches sciences, including zoology, plant science, microbiology, biochemistry, molecular biology, cell developmental genetics, neuroscience, psychology, pharmacology, clinical medicine, biomaterials, ecology, environmental science. It elaborates important roles aspects such as behavior monitoring, population dynamic prediction, microorganism identification, disease detection. At same time, it points out challenges faced by application data quality, black-box problems, ethical concerns. The are prospected from technological innovation interdisciplinary cooperation. integration Bio-Technologies (BT) Information-Technologies (IT) will transform biomedical research into AI for Science paradigm.</p>
Язык: Английский
Процитировано
7Journal of Hazardous Materials, Год журнала: 2025, Номер unknown, С. 138208 - 138208
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Water Research, Год журнала: 2024, Номер 267, С. 122457 - 122457
Опубликована: Сен. 16, 2024
Язык: Английский
Процитировано
3Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2025, Номер unknown, С. 103875 - 103875
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0ACS ES&T Water, Год журнала: 2025, Номер unknown
Опубликована: Янв. 26, 2025
Язык: Английский
Процитировано
0Microchimica Acta, Год журнала: 2025, Номер 192(3)
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
0Ecological Indicators, Год журнала: 2025, Номер 174, С. 113498 - 113498
Опубликована: Апрель 20, 2025
Язык: Английский
Процитировано
0Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Год журнала: 2024, Номер 326, С. 125178 - 125178
Опубликована: Сен. 20, 2024
Язык: Английский
Процитировано
1Journal of Hazardous Materials, Год журнала: 2024, Номер 485, С. 136804 - 136804
Опубликована: Дек. 5, 2024
Язык: Английский
Процитировано
0