Solvent‐Directed Construction of a Nanoporous Metal‐Organic Framework with Potential in Selective Adsorption and Separation of Gas Mixtures Studied by Grand Canonical Monte Carlo Simulations DOI
Saeideh Salimi, Kamran Akhbari, S. Morteza F. Farnia

и другие.

ChemPlusChem, Год журнала: 2023, Номер 89(1)

Опубликована: Окт. 21, 2023

Abstract In this report, a microporous metal–organic framework of [Ca(TDC)(DMA)] n ( 1 ) and two‐dimensional coordination polymer [Ca(TDC)(DMF) 2 ] ), (TDC 2− =Thiophene‐2,5‐dicarboxylate, DMA=N, N'‐dimethylacetamide DMF=N, N'‐dimethylformamide) based on Ca(II) were designed by the effect solvent, X‐ray analysis was performed for single crystals . Then, compound synthesized in three different methods identified with set analyses. Compared to other adsorbents, MOFs are widely used field adsorption separation various gases due series distinctive features such as diverse adjustable structures pores dimensions, high porosity surface area regular distribution active sites. Therefore, ability uptake (CH 4 , CO C H 2, N several binary mixtures (CO /CH /N /H /C investigated using Grand Canonical Monte Carlo simulations. Volumetric gravimetric isotherms operating conditions, isosteric heat (q st chemical potential each thermodynamic state, snapshots during simulation process reported all cases. The results obtained from indicate that has capacity (16 mmol g −1 (12.5 (6.6 (5 CH (1.5 at bar. It also performs well separating mixtures, which can be attributed presence open metal sites nodes their electrostatic tendency interact containing higher quadrupole dipole moment compared components mixture.

Язык: Английский

Accelerated Discovery of Metal–Organic Frameworks for CO2 Capture by Artificial Intelligence DOI Creative Commons
Hasan Can Gülbalkan, Gokhan Onder Aksu, Goktug Ercakir

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2023, Номер 63(1), С. 37 - 48

Опубликована: Дек. 25, 2023

The existence of a very large number porous materials is great opportunity to develop innovative technologies for carbon dioxide (CO2) capture address the climate change problem. On other hand, identifying most promising adsorbent and membrane candidates using iterative experimental testing brute-force computer simulations challenging due enormous variety materials. Artificial intelligence (AI) has recently been integrated into molecular modeling materials, specifically metal–organic frameworks (MOFs), accelerate design discovery high-performing adsorbents membranes CO2 adsorption separation. In this perspective, we highlight pioneering works in which AI, simulations, experiments have combined produce exceptional MOFs MOF-based composites that outperform traditional capture. We outline future directions by discussing current opportunities challenges field harnessing experiments, theory, AI accelerated

Язык: Английский

Процитировано

15

Interfacial polymerization of COF-polyamide composite membranes modified with ionic liquids for CO2 separations DOI
Yanting Tang, Qingnan Wang, Xiaohe Tian

и другие.

Journal of Membrane Science, Год журнала: 2024, Номер unknown, С. 123557 - 123557

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

6

Bi-functionalized ionic liquid/metal-organic framework composite for low-concentration CO2 cycloaddition reaction under atmospheric pressure DOI
Liwei Sun,

Meilin Yin,

Shaokun Tang

и другие.

Journal of environmental chemical engineering, Год журнала: 2023, Номер 11(5), С. 110843 - 110843

Опубликована: Авг. 24, 2023

Язык: Английский

Процитировано

12

Metal–Organic Frameworks through the Lens of Artificial Intelligence: A Comprehensive Review DOI

Kevizali Neikha,

Амрит Пузари

Langmuir, Год журнала: 2024, Номер 40(42), С. 21957 - 21975

Опубликована: Окт. 9, 2024

Metal–organic frameworks (MOFs) are a class of hybrid porous materials that have gained prominence as noteworthy material with varied applications. Currently, MOFs in extensive use, particularly the realms energy and catalysis. The synthesis these poses considerable challenges, their computational analysis is notably intricate due to complex structure versatile applications field science. Density functional theory (DFT) has helped researchers understanding reactions mechanisms, but it costly time-consuming requires bigger systems perform calculations. Machine learning (ML) techniques were adopted order overcome problems by implementing ML data sets for synthesis, structure, property predictions MOFs. These fast, efficient, accurate do not require heavy computing. In this review, we discuss models used MOF incorporation artificial intelligence (AI) predictions. advantage AI would accelerate research, synthesizing novel multiple properties oriented minimum information.

Язык: Английский

Процитировано

5

Preparation of larger MXene layers and research progress in the field of gas adsorption and separation DOI
Peng Zu, Xiujing Xing,

Haohan Wan

и другие.

Separation and Purification Technology, Год журнала: 2023, Номер 327, С. 125010 - 125010

Опубликована: Сен. 2, 2023

Язык: Английский

Процитировано

10

Multi-criteria computational screening of [BMIM][DCA]@MOF composites for CO2 capture DOI Creative Commons

Mengjia Sheng,

Xiang Zhang, Hongye Cheng

и другие.

Green Chemical Engineering, Год журнала: 2024, Номер unknown

Опубликована: Июль 1, 2024

Ionic liquid (IL) can be inserted into metal organic framework (MOF) to form IL@MOF composite with enhanced properties. In this work, hypothetical IL@MOFs were computationally constructed and screened by integrating molecular simulation convolutional neural network (CNN) for CO2 capture. First, the IL [BMIM][DCA] a large solubility was 1631 pre-selected Computational-Ready Experimental (CoRE) MOFs create IL@MOFs. Then, given temperature pressure of adsorption desorption, CO2/N2 selectivity working capacity 700 representative assessed via simulations. Based on results, two CNN models trained used predict performance other IL@MOFs, which reduces computational costs effectively. By combining results model predictions, 22 top-ranked identified. Three distinct ones IL@HABDAS, IL@GUBKUL, IL@MARJAQ chosen explicit analysis. It found that desired balance between obtained inserting optimal number molecules. This helps guide novel design composites advanced carbon

Язык: Английский

Процитировано

4

CO2 gas-liquid equilibrium study and machine learning analysis in MEA-DMEA blended amine solutions DOI Creative Commons
Haonan Liu, Francesco Barzagli,

Li Luo

и другие.

Separation and Purification Technology, Год журнала: 2024, Номер 356, С. 130024 - 130024

Опубликована: Окт. 6, 2024

Язык: Английский

Процитировано

4

Targeted metal–organic framework discovery goes digital: machine learning’s quest from algorithms to atom arrangements DOI

Maryam Chafiq,

Abdelkarim Chaouiki, Young Gun Ko

и другие.

Advanced Composites and Hybrid Materials, Год журнала: 2024, Номер 7(6)

Опубликована: Ноя. 4, 2024

Язык: Английский

Процитировано

4

A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning DOI
Min Cheng, Zhiyuan Zhang,

Shihui Wang

и другие.

Frontiers of Environmental Science & Engineering, Год журнала: 2023, Номер 17(12)

Опубликована: Июль 15, 2023

Язык: Английский

Процитировано

9

Toward rational design of ionic liquid/Metal-Organic Framework composites for efficient gas separations: Combining molecular modeling, machine learning, and experiments to move beyond trial-and-error DOI
Nitasha Habib, Hasan Can Gülbalkan,

Ahmet Safa Aydogdu

и другие.

Coordination Chemistry Reviews, Год журнала: 2025, Номер 539, С. 216707 - 216707

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0