Highly efficient maximum-likelihood identification methods for bilinear systems with colored noises DOI
Meihang Li,

Ximei Liu,

Yamin Fan

и другие.

Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, Год журнала: 2024, Номер 238(10), С. 1763 - 1784

Опубликована: Июль 27, 2024

This paper mainly discussed the highly efficient iterative identification methods for bilinear systems with autoregressive moving average noise. Firstly, input-output representation of is derived through eliminating unknown state variables in model. Then based on maximum-likelihood principle, a gradient-based (ML-GI) algorithm proposed to identify parameters colored noises. For improving computational efficiency, original model divided into three sub-identification models smaller dimensions and fewer parameters, hierarchical (H-ML-GI) by using principle. A (GI) given comparison. Finally, algorithms are verified simulation example practical continuous stirred tank reactor (CSTR) example. The results show that effective identifying noises H-ML-GI has higher efficiency faster convergence rate than ML-GI GI algorithm.

Язык: Английский

Auxiliary model maximum likelihood gradient‐based iterative identification for feedback nonlinear systems DOI
Lijuan Liu, Fu Li, Junxia Ma

и другие.

Optimal Control Applications and Methods, Год журнала: 2024, Номер 45(5), С. 2346 - 2363

Опубликована: Июнь 17, 2024

Abstract This article considers the iterative identification problems for a class of feedback nonlinear systems with moving average noise. The model contains both dynamic linear module and static module, which brings challenges to identification. By utilizing key term separation technique, unknown parameters from modules are included in parameter vector. Furthermore, an auxiliary maximum likelihood gradient‐based algorithm is derived estimate parameters. In addition, stochastic gradient as comparison. numerical simulation results indicate that can effectively get more accurate estimates than algorithm.

Язык: Английский

Процитировано

19

Auxiliary Model‐Based Maximum Likelihood Multi‐Innovation Forgetting Gradient Identification for a Class of Multivariable Systems DOI Open Access
Huihui Wang, Ximei Liu

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Янв. 29, 2025

ABSTRACT Through dividing a multivariable system into several subsystems, this paper derives the sub‐identification model. Utilizing obtained model, an auxiliary model‐based maximum likelihood forgetting gradient algorithm is derived. Considering enhancing parameter estimation accuracy, multi‐innovation (AM‐ML‐MIFG) proposed taking advantage of identification theory. Simulation results test effectiveness algorithms, and confirm that AM‐ML‐MIFG has satisfactory performance in capturing dynamic properties system.

Язык: Английский

Процитировано

3

Hierarchical estimation methods based on the penalty term for controlled autoregressive systems with colored noises DOI
Huanqi Sun, Weili Xiong, Feng Ding

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер 34(10), С. 6804 - 6826

Опубликована: Март 21, 2024

Abstract This article considers the parameter estimation problems for controlled autoregressive systems interfered by moving average noises. A recursive extended gradient algorithm with penalty term is proposed using criterion function. By introducing three fictitious output variables, original system can be decomposed into subsystems based on hierarchical principle. The then to achieve estimation. Finally, experimental results demonstrate effectiveness of algorithms.

Язык: Английский

Процитировано

15

Iterative parameter identification for Hammerstein systems with ARMA noises by using the filtering identification idea DOI Creative Commons
Saïda Bedoui, Kamel Abderrahim, Feng Ding

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(9), С. 3134 - 3160

Опубликована: Июнь 28, 2024

Summary In practical applications, many processes have nonlinear characteristics that require models for accurate description. However, constructing such and determining their parameters are a challenging task. This article explores filtered identification methods estimating the of particular type Hammerstein systems with ARMA noise. An auxiliary model‐based least squares algorithm is developed based on model idea. A hierarchical utilizes principle proposed to enhance computational efficiency. Additionally, key term separation technique employed express system output as linear combination parameters, allowing be decomposed into smaller subsystems more efficient estimation parameters. Simulation results demonstrate effectiveness these algorithms.

Язык: Английский

Процитировано

15

Parameter estimation methods for time‐invariant continuous‐time systems from dynamical discrete output responses based on the Laplace transforms DOI

Kader Ali Ibrahim,

Feng Ding

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(9), С. 3213 - 3232

Опубликована: Июль 3, 2024

Summary In industrial process control systems, parameter estimation is crucial for controller design and model analysis. This article examines the issue of identifying parameters in continuous‐time models. presents a stochastic gradient algorithm recursive least squares continuous systems. It derives identification linear systems based on Laplace transforms input output To prove that techniques given here work, we have included simulated example.

Язык: Английский

Процитировано

11

Sliding Window Iterative Identification for Nonlinear Closed‐Loop Systems Based on the Maximum Likelihood Principle DOI
Lijuan Liu, Fu Li, Wei Liu

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 1, 2024

ABSTRACT The parameter estimation problem for the nonlinear closed‐loop systems with moving average noise is considered in this article. For purpose of overcoming difficulty that dynamic linear module and static lead to identification complexity issues, unknown parameters from both modules are included a vector by use key term separation technique. Furthermore, an sliding window maximum likelihood least squares iterative algorithm gradient derived estimate parameters. numerical simulation indicates efficiency proposed algorithms.

Язык: Английский

Процитировано

10

Intra- and inter-instance Location Correlation Network for human–object interaction detection DOI

Minglang Lu,

Guanci Yang, Yang Wang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 142, С. 109942 - 109942

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

2

Highly Efficient Two-Stage Filtering-Based Maximum Likelihood Stochastic Gradient Algorithm for Multiple-Input Multiple-Output Systems DOI
Huihui Wang, Ximei Liu

Circuits Systems and Signal Processing, Год журнала: 2025, Номер unknown

Опубликована: Март 22, 2025

Язык: Английский

Процитировано

2

Highly efficient three-stage maximum likelihood recursive least squares identification method for multiple-input multiple-output systems DOI
Huihui Wang, Ximei Liu

Systems & Control Letters, Год журнала: 2025, Номер 200, С. 106094 - 106094

Опубликована: Апрель 6, 2025

Язык: Английский

Процитировано

2

Hierarchical Newton iterative identification methods for a class of input multi-piecewise Hammerstein models with autoregressive noise DOI
Yamin Fan, Ximei Liu, Meihang Li

и другие.

Mathematics and Computers in Simulation, Год журнала: 2025, Номер 237, С. 247 - 262

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

1