Highly efficient maximum-likelihood identification methods for bilinear systems with colored noises DOI
Meihang Li,

Ximei Liu,

Yamin Fan

и другие.

Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, Год журнала: 2024, Номер 238(10), С. 1763 - 1784

Опубликована: Июль 27, 2024

This paper mainly discussed the highly efficient iterative identification methods for bilinear systems with autoregressive moving average noise. Firstly, input-output representation of is derived through eliminating unknown state variables in model. Then based on maximum-likelihood principle, a gradient-based (ML-GI) algorithm proposed to identify parameters colored noises. For improving computational efficiency, original model divided into three sub-identification models smaller dimensions and fewer parameters, hierarchical (H-ML-GI) by using principle. A (GI) given comparison. Finally, algorithms are verified simulation example practical continuous stirred tank reactor (CSTR) example. The results show that effective identifying noises H-ML-GI has higher efficiency faster convergence rate than ML-GI GI algorithm.

Язык: Английский

Gradient-Based Recursive Parameter Estimation Methods for a Class of Time-Varying Systems from Noisy Observations DOI
Ning Xu,

Qinyao Liu,

Feng Ding

и другие.

Circuits Systems and Signal Processing, Год журнала: 2024, Номер 43(11), С. 7089 - 7116

Опубликована: Июль 29, 2024

Язык: Английский

Процитировано

9

Auxiliary model‐based recursive least squares and stochastic gradient algorithms and convergence analysis for feedback nonlinear output‐error systems DOI Open Access
Guangqin Miao, Dan Yang, Feng Ding

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(10), С. 3268 - 3289

Опубликована: Июль 29, 2024

Summary This paper deals with the problem of parameter estimation for feedback nonlinear output‐error systems. The auxiliary model‐based recursive least squares algorithm and stochastic gradient are derived estimation. Based on process theory, convergence proposed algorithms proved. simulation results indicate that can estimate parameters systems effectively.

Язык: Английский

Процитировано

9

Separable Synchronous Gradient‐Based Iterative Algorithms for the Nonlinear ExpARX System DOI
Ya Gu,

Yuting Hou,

Chuanjiang Li

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер unknown

Опубликована: Сен. 9, 2024

ABSTRACT This article is aimed to study the parameter identification of ExpARX system. To overcome computational complexity associated with a large number feature parameters, separation scheme based on different features model introduced. In terms phenomenon that coupling parameters lead inability algorithms, separable synchronous interactive estimation method introduced eliminate and perform in accordance hierarchical principle. For purpose achieving high‐accuracy performance reducing complexity, gradient iterative algorithm derived by means search. order improve accuracy, multi‐innovation proposed introducing theory. convergence speed, conjugate Finally, simulation example real‐life piezoelectric ceramics are used verify effectiveness algorithm.

Язык: Английский

Процитировано

9

Regularization based reweighted estimation algorithms for nonlinear systems in presence of outliers DOI
Yawen Mao, Xu Chen, Jing Chen

и другие.

Nonlinear Dynamics, Год журнала: 2024, Номер 112(15), С. 13131 - 13146

Опубликована: Май 28, 2024

Язык: Английский

Процитировано

8

Highly efficient maximum-likelihood identification methods for bilinear systems with colored noises DOI
Meihang Li,

Ximei Liu,

Yamin Fan

и другие.

Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, Год журнала: 2024, Номер 238(10), С. 1763 - 1784

Опубликована: Июль 27, 2024

This paper mainly discussed the highly efficient iterative identification methods for bilinear systems with autoregressive moving average noise. Firstly, input-output representation of is derived through eliminating unknown state variables in model. Then based on maximum-likelihood principle, a gradient-based (ML-GI) algorithm proposed to identify parameters colored noises. For improving computational efficiency, original model divided into three sub-identification models smaller dimensions and fewer parameters, hierarchical (H-ML-GI) by using principle. A (GI) given comparison. Finally, algorithms are verified simulation example practical continuous stirred tank reactor (CSTR) example. The results show that effective identifying noises H-ML-GI has higher efficiency faster convergence rate than ML-GI GI algorithm.

Язык: Английский

Процитировано

8