Chemical Engineering Journal, Год журнала: 2024, Номер unknown, С. 159113 - 159113
Опубликована: Дек. 1, 2024
Язык: Английский
Chemical Engineering Journal, Год журнала: 2024, Номер unknown, С. 159113 - 159113
Опубликована: Дек. 1, 2024
Язык: Английский
Discover Nano, Год журнала: 2024, Номер 19(1)
Опубликована: Ноя. 8, 2024
Wearable sensors have attracted considerable interest due to their ability detect a variety of information generated by human physiological activities through physical and chemical means. The performance wearable is limited stability, endowing with superhydrophobicity one the means enable them maintain excellent in harsh environments. This review emphasizes imperative progress flexible superhydrophobic for devices. Besides, wettability principle mechanism are briefly introduced propose combination sensors. Next, substrates sensors, including but not to, polydimethylsiloxane, polyurethane, gel, rubber, fabric, described depth, also respective fabrication processes performances. Moreover, utility normal intelligent environment described, highlighting application monitoring signals, such as movement, pulse, vibration, temperature, perspiration, respiration, so on. Finally, this evaluates challenges dilemmas that must be overcome further development improve functional paving way expansion into advanced sensing systems.
Язык: Английский
Процитировано
1Sensors, Год журнала: 2024, Номер 24(15), С. 5080 - 5080
Опубликована: Авг. 5, 2024
Robots execute diverse load operations, including carrying, lifting, tilting, and moving objects, involving changes or transfers. This dynamic process can result in the shift of interactive operations from stability to instability. In this paper, we respond these by utilizing tactile images captured sensors during interactions, conducting a study on instability propose real-time state sensing network integrating convolutional neural networks (CNNs) for spatial feature extraction long short-term memory (LSTM) capture temporal information. We collect dataset capturing entire transition stable unstable states interaction. Employing sliding window, sample consecutive frames collected feed them into change predictions robots. The achieves both sequence prediction at 31.84 ms per inference step an average classification accuracy 98.90%. Our experiments demonstrate network's robustness, maintaining high even with previously unseen objects.
Язык: Английский
Процитировано
0Materials Today Physics, Год журнала: 2024, Номер unknown, С. 101562 - 101562
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
0Micromachines, Год журнала: 2024, Номер 15(11), С. 1350 - 1350
Опубликована: Ноя. 1, 2024
Fields such as the Internet of Things (IoT), smart healthcare, and intelligent manufacturing are at forefront technological advancement, involving extensive deployment numerous sophisticated electronic systems devices [...].
Язык: Английский
Процитировано
0Journal of Bionic Engineering, Год журнала: 2024, Номер unknown
Опубликована: Дек. 30, 2024
Язык: Английский
Процитировано
0Chemical Engineering Journal, Год журнала: 2024, Номер unknown, С. 159113 - 159113
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0