Self-Driving Laboratories for Chemistry and Materials Science DOI Creative Commons
Gary Tom, Stefan P. Schmid, Sterling G. Baird

и другие.

Chemical Reviews, Год журнала: 2024, Номер 124(16), С. 9633 - 9732

Опубликована: Авг. 13, 2024

Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through automation experimental workflows, along with autonomous planning, SDLs hold potential to greatly accelerate research in chemistry and materials discovery. This review provides in-depth analysis state-of-the-art SDL technology, its applications across various disciplines, implications for industry. additionally overview enabling technologies SDLs, including their hardware, software, integration laboratory infrastructure. Most importantly, this explores diverse range domains where have made significant contributions, from drug discovery science genomics chemistry. We provide a comprehensive existing real-world examples different levels automation, challenges limitations associated each domain.

Язык: Английский

Nanoparticle synthesis assisted by machine learning DOI

Huachen Tao,

Tianyi Wu, Matteo Aldeghi

и другие.

Nature Reviews Materials, Год журнала: 2021, Номер 6(8), С. 701 - 716

Опубликована: Июль 13, 2021

Язык: Английский

Процитировано

331

The Role of Machine Learning in the Understanding and Design of Materials DOI Creative Commons
Seyed Mohamad Moosavi, Kevin Maik Jablonka, Berend Smit

и другие.

Journal of the American Chemical Society, Год журнала: 2020, Номер 142(48), С. 20273 - 20287

Опубликована: Ноя. 10, 2020

Developing algorithmic approaches for the rational design and discovery of materials can enable us to systematically find novel materials, which have huge technological social impact. However, such requires a holistic perspective over full multistage process, involves exploring immense spaces, their properties, process engineering as well techno-economic assessment. The complexity all these options using conventional scientific seems intractable. Instead, tools from field machine learning potentially solve some our challenges on way design. Here we review chief advancements methods applications in design, followed by discussion main opportunities currently face together with future discovery.

Язык: Английский

Процитировано

313

The rise of self-driving labs in chemical and materials sciences DOI Open Access
Milad Abolhasani, Eugenia Kumacheva

Nature Synthesis, Год журнала: 2023, Номер 2(6), С. 483 - 492

Опубликована: Янв. 30, 2023

Язык: Английский

Процитировано

275

Autonomous experimentation systems for materials development: A community perspective DOI Creative Commons
Eric A. Stach, Brian DeCost, A. Gilad Kusne

и другие.

Matter, Год журнала: 2021, Номер 4(9), С. 2702 - 2726

Опубликована: Июль 26, 2021

Язык: Английский

Процитировано

263

Machine learning for a sustainable energy future DOI Open Access
Zhenpeng Yao, Yanwei Lum, Andrew Johnston

и другие.

Nature Reviews Materials, Год журнала: 2022, Номер 8(3), С. 202 - 215

Опубликована: Окт. 18, 2022

Язык: Английский

Процитировано

239

Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets DOI

Myung Sik Choi,

Min Young Kim, Ali Mirzaei

и другие.

Applied Surface Science, Год журнала: 2021, Номер 568, С. 150910 - 150910

Опубликована: Авг. 17, 2021

Язык: Английский

Процитировано

235

Data-driven materials research enabled by natural language processing and information extraction DOI Creative Commons

Elsa Olivetti,

Jacqueline M. Cole, Edward Kim

и другие.

Applied Physics Reviews, Год журнала: 2020, Номер 7(4)

Опубликована: Дек. 1, 2020

Given the emergence of data science and machine learning throughout all aspects society, but particularly in scientific domain, there is increased importance placed on obtaining data. Data materials are heterogeneous, based significant range classes that explored variety properties interest. This leads to many orders magnitude, these may manifest as numerical text or image-based information, which requires quantitative interpretation. The ability automatically consume codify literature across domains—enabled by techniques adapted from field natural language processing—therefore has immense potential unlock generate rich datasets necessary for learning. review focuses progress practices processing mining highlights opportunities extracting additional information beyond contained figures tables articles. We discuss provide examples several reasons pursuit materials, including compilation, hypothesis development, understanding trends within fields. Current emerging methods along with their applications detailed. We, then, challenges domain where future directions prove valuable.

Язык: Английский

Процитировано

227

Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning DOI Creative Commons
Aditya Nandy, Chenru Duan, Michael G. Taylor

и другие.

Chemical Reviews, Год журнала: 2021, Номер 121(16), С. 9927 - 10000

Опубликована: Июль 14, 2021

Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior metal-organic bond, while very tunable achieving target properties, is challenging to predict necessitates searching a wide complex space identify needles in haystacks applications. This review will focus on techniques that make high-throughput search transition-metal chemical feasible discovery with desirable properties. cover development, promise, limitations "traditional" computational chemistry (i.e., force field, semiempirical, density theory methods) as it pertains data generation inorganic molecular discovery. also discuss opportunities leveraging experimental sources. We how advances statistical modeling, artificial intelligence, multiobjective optimization, automation accelerate lead compounds rules. overall objective this showcase bringing together from diverse areas computer science have enabled rapid uncovering structure-property relationships chemistry. aim highlight unique considerations motifs bonding (e.g., variable spin oxidation state, strength/nature) set them their apart more commonly considered organic molecules. uncertainty relative scarcity motivate specific developments machine learning representations, model training, Finally, we conclude an outlook opportunity accelerated complexes.

Язык: Английский

Процитировано

220

Machine learning in materials science: From explainable predictions to autonomous design DOI Creative Commons
Ghanshyam Pilania

Computational Materials Science, Год журнала: 2021, Номер 193, С. 110360 - 110360

Опубликована: Март 10, 2021

Язык: Английский

Процитировано

180

MatSciBERT: A materials domain language model for text mining and information extraction DOI Creative Commons
Tanishq Gupta, Mohd Zaki, N. M. Anoop Krishnan

и другие.

npj Computational Materials, Год журнала: 2022, Номер 8(1)

Опубликована: Май 3, 2022

Abstract A large amount of materials science knowledge is generated and stored as text published in peer-reviewed scientific literature. While recent developments natural language processing, such Bidirectional Encoder Representations from Transformers (BERT) models, provide promising information extraction tools, these models may yield suboptimal results when applied on domain since they are not trained specific notations jargons. Here, we present a materials-aware model, namely, MatSciBERT, corpus publications. We show that MatSciBERT outperforms SciBERT, model corpus, establish state-of-the-art three downstream tasks, named entity recognition, relation classification, abstract classification. make the pre-trained weights publicly accessible for accelerated discovery texts.

Язык: Английский

Процитировано

170