Informatics-based design of polyaniline-carbon nanotube thermoelectric nanocomposite using ANN and GA DOI
Dariush Ebrahimibagha, Mallar Ray, Shubhabrata Datta

и другие.

Functional Composites and Structures, Год журнала: 2024, Номер 6(4), С. 045008 - 045008

Опубликована: Ноя. 5, 2024

Abstract Conducting polymer and carbon nanotube (CNT) based nanocomposites have emerged as prospective thermoelectric (TE) materials due to their potential application in flexible electronics. Non-conventional charge heat transport these nanocomposites, presents the possibility enhance TE conversion efficiency, given by Z T . However, highly non-linear complex association of structure composition with overall properties hindered development any general strategy develop high nanocomposites. Here, we implement artificial neural network genetic algorithm data driven models followed optimization design efficiency on CNT dispersed polyaniline (PANI) matrix. Our suggest that concentration plays most crucial role determining . Non-dominated Pareto optimal solutions consisting different combinations variables are obtained multi-objective optimization. Although a range span over regions search space, note longer CNTs boost Seebeck coefficient ( S ) electrical conductivity ( σ ) , smaller length lowers thermal k ), while higher diameter increase The results provide guideline for developing CNT-PANI enhanced figure merit.

Язык: Английский

Intrinsically low lattice thermal conductivity and multivalley band structure induced promising high thermoelectric performance in Pb3Bi2S6 DOI
Dongyang Wang, Ke Zhao, Tao Hong

и другие.

Materials Today Physics, Год журнала: 2025, Номер unknown, С. 101654 - 101654

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Enhanced Thermoelectric Performance in Cu7Sn3S10‐based Hybrid Materials with Highly Dispersed Multiwalled Carbon Nanotubes DOI Open Access
Shun Wan, Tingting Deng, Qingfeng Song

и другие.

Advanced Functional Materials, Год журнала: 2025, Номер unknown

Опубликована: Март 17, 2025

Abstract Ternary copper chalcogenide Cu 7 Sn 3 S 10 has attracted great attention due to its complex and tunable crystal structure, good thermoelectric performance, earth‐abundant eco‐friendly elements. However, the optimization of performance in is greatly restricted because strategy element doping tune electrical thermal transports only limited by halogen Here, highly dispersed multiwalled carbon nanotubes (MCNTs) are introduced into realize hybrid materials with enhanced performance. A series 7+ y / x wt.% MCNTs successfully fabricated ball milling combined spark plasma sintering. The high‐purity /MCNTs identified as polymorphs simultaneously crystalizing tetragonal, primitive cubic, face‐centered cubic structures. Such phase structures can produce lots intrinsic cation‐disorders, interfaces, grain boundaries, heterointerfaces, which strengthen phonon carrier scattering, while heterointerfaces serve reservoirs trap holes reduce concentration toward optimal range. Combining these effects, both lattice conductivity significantly reduced. Correspondingly, a maximum figure merit zT 0.65 achieved 7.05 /2wt.% at 750 K, about twice compared MCNTs‐free . This work suggests that well enhance material's

Язык: Английский

Процитировано

0

Advances in theory and computational methods for next-generation thermoelectric materials DOI

Junsoo Park,

Alex M. Ganose,

Yi Xia

и другие.

Applied Physics Reviews, Год журнала: 2025, Номер 12(1)

Опубликована: Март 1, 2025

This is a review of theoretical and methodological development over the past decade pertaining to computational characterization thermoelectric materials from first principles. Primary focus on electronic thermal transport in solids. Particular attention given relationships between various methods terms hierarchy as well tradeoff physical accuracy efficiency each. Further covered are up-and-coming for modeling defect formation dopability, keys realizing material's potential. We present discuss all these close connection with parallel developments high-throughput infrastructure code implementation that enable large-scale computing screening. In all, it demonstrated advances tools now ripe efficient accurate targeting needles haystack, which “next-generation” materials.

Язык: Английский

Процитировано

0

Large language model-driven database for thermoelectric materials DOI

Suman Itani,

Yibo Zhang, Jiadong Zang

и другие.

Computational Materials Science, Год журнала: 2025, Номер 253, С. 113855 - 113855

Опубликована: Март 30, 2025

Язык: Английский

Процитировано

0

Synergistically optimize thermoelectric and mechanical properties of cubic SnSe-based alloys via nanocomposite engineering utilizing SiC nanoparticles as the dispersed phase DOI
Wenying Wang, Junliang Zhu,

Lin Bo

и другие.

Rare Metals, Год журнала: 2025, Номер unknown

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0

Thermoelectric performance enhancement of copper iodide pellets through potassium iodide doping DOI

K.G.D.T.B. Kahawaththa,

L.K. Narangammana,

N.D. Subasinghe

и другие.

Journal of Power Sources, Год журнала: 2025, Номер 643, С. 237043 - 237043

Опубликована: Апрель 17, 2025

Язык: Английский

Процитировано

0

Research Progress of Thermoelectric Materials—A Review DOI Creative Commons
Jun Wang,

Yonggao Yin,

Chunwen Che

и другие.

Energies, Год журнала: 2025, Номер 18(8), С. 2122 - 2122

Опубликована: Апрель 21, 2025

Thermoelectric materials are functional that directly convert thermal energy into electrical or vice versa, and due to their inherent properties, they hold significant potential in the field of conversion. In this review, we examine several fundamental strategies aimed at enhancing conversion efficiency, classification, preparation methods, applications thermoelectric materials. First, introduce an important parameter for evaluating performance materials, dimensionless quality factor ZT, present theory electroacoustic transport which provides foundation Second, optimizing carrier concentration, band engineering, phonon entropy engineering summarized, emphasizing presents numerous possibilities material by tuning effective mass, convergence, resonance. By analyzing importance various optimization strategies, it is concluded co-optimization primary method improving future. addition, overview currently available provided, including two categories, classical novel along with a highlight techniques. Finally, principles technology illustrated, its fields discussed, problems current research analyzed, future trends outlined. Overall, paper comprehensive summary classifications, applications, offering valuable references insights researchers field, aim further advancing development science.

Язык: Английский

Процитировано

0

Machine learning-enabled optoelectronic material discovery: a comprehensive review DOI Open Access
Yu Shu, Naihua Miao,

R. J. Li

и другие.

Journal of Materials Informatics, Год журнала: 2025, Номер 5(3)

Опубликована: Май 28, 2025

The development of advanced optoelectronic materials constitutes a pivotal frontier in modern energy and communication technologies, facilitating critical energy-photon-electron interconversion processes that underpin sustainable infrastructures high-performance electronic devices. However, the discovery optimization novel face substantial hurdles arising from complicated structure-property interdependencies, prohibitive costs, protracted innovation cycles. Conventional empirical approaches computational simulations usually exhibit limited efficacy addressing escalating demands for with superior stability, economic viability, customizable properties. integration machine learning (ML) high-throughput screening has emerged as transformative strategy to address these challenges. By rapidly processing large multidimensional datasets predicting material properties such structure, thermodynamic charge transport behaviors, ML offers unprecedented capabilities efficient rational design materials. This review provides comprehensive overview cutting-edge ML-driven methodologies emphasis on workflows, data strategies, model frameworks. We also discuss challenges prospects applications, particularly standardization, interpretability closed-loop experimental validation. further propose potential artificial intelligence autonomous laboratories build powerful pipeline advance

Язык: Английский

Процитировано

0

Enhanced service stability and thermoelectric performance in Cu2−δSe-based composites DOI
Pengfei Qiu, Xun Shi

Science China Materials, Год журнала: 2024, Номер 67(7), С. 2369 - 2370

Опубликована: Май 22, 2024

Язык: Английский

Процитировано

1

Size and surface-dependent phase transition temperature in Cu2Se nanobridges DOI
Ziyang Huang, Renhui Jiang, Pei Li

и другие.

Nano Today, Год журнала: 2024, Номер 58, С. 102460 - 102460

Опубликована: Авг. 29, 2024

Язык: Английский

Процитировано

1