Physical review. B./Physical review. B, Год журнала: 2024, Номер 110(17)
Опубликована: Ноя. 5, 2024
Язык: Английский
Physical review. B./Physical review. B, Год журнала: 2024, Номер 110(17)
Опубликована: Ноя. 5, 2024
Язык: Английский
Applied Physics Reviews, Год журнала: 2025, Номер 12(1)
Опубликована: Март 1, 2025
This is a review of theoretical and methodological development over the past decade pertaining to computational characterization thermoelectric materials from first principles. Primary focus on electronic thermal transport in solids. Particular attention given relationships between various methods terms hierarchy as well tradeoff physical accuracy efficiency each. Further covered are up-and-coming for modeling defect formation dopability, keys realizing material's potential. We present discuss all these close connection with parallel developments high-throughput infrastructure code implementation that enable large-scale computing screening. In all, it demonstrated advances tools now ripe efficient accurate targeting needles haystack, which “next-generation” materials.
Язык: Английский
Процитировано
0Computational Materials Science, Год журнала: 2025, Номер 253, С. 113855 - 113855
Опубликована: Март 30, 2025
Язык: Английский
Процитировано
0Rare Metals, Год журнала: 2025, Номер unknown
Опубликована: Апрель 4, 2025
Язык: Английский
Процитировано
0Journal of Power Sources, Год журнала: 2025, Номер 643, С. 237043 - 237043
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0Energies, Год журнала: 2025, Номер 18(8), С. 2122 - 2122
Опубликована: Апрель 21, 2025
Thermoelectric materials are functional that directly convert thermal energy into electrical or vice versa, and due to their inherent properties, they hold significant potential in the field of conversion. In this review, we examine several fundamental strategies aimed at enhancing conversion efficiency, classification, preparation methods, applications thermoelectric materials. First, introduce an important parameter for evaluating performance materials, dimensionless quality factor ZT, present theory electroacoustic transport which provides foundation Second, optimizing carrier concentration, band engineering, phonon entropy engineering summarized, emphasizing presents numerous possibilities material by tuning effective mass, convergence, resonance. By analyzing importance various optimization strategies, it is concluded co-optimization primary method improving future. addition, overview currently available provided, including two categories, classical novel along with a highlight techniques. Finally, principles technology illustrated, its fields discussed, problems current research analyzed, future trends outlined. Overall, paper comprehensive summary classifications, applications, offering valuable references insights researchers field, aim further advancing development science.
Язык: Английский
Процитировано
0Journal of Materials Informatics, Год журнала: 2025, Номер 5(3)
Опубликована: Май 28, 2025
The development of advanced optoelectronic materials constitutes a pivotal frontier in modern energy and communication technologies, facilitating critical energy-photon-electron interconversion processes that underpin sustainable infrastructures high-performance electronic devices. However, the discovery optimization novel face substantial hurdles arising from complicated structure-property interdependencies, prohibitive costs, protracted innovation cycles. Conventional empirical approaches computational simulations usually exhibit limited efficacy addressing escalating demands for with superior stability, economic viability, customizable properties. integration machine learning (ML) high-throughput screening has emerged as transformative strategy to address these challenges. By rapidly processing large multidimensional datasets predicting material properties such structure, thermodynamic charge transport behaviors, ML offers unprecedented capabilities efficient rational design materials. This review provides comprehensive overview cutting-edge ML-driven methodologies emphasis on workflows, data strategies, model frameworks. We also discuss challenges prospects applications, particularly standardization, interpretability closed-loop experimental validation. further propose potential artificial intelligence autonomous laboratories build powerful pipeline advance
Язык: Английский
Процитировано
0Solid State Communications, Год журнала: 2024, Номер 389, С. 115581 - 115581
Опубликована: Июнь 4, 2024
Язык: Английский
Процитировано
3Acta Materialia, Год журнала: 2024, Номер 280, С. 120343 - 120343
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
3Science China Materials, Год журнала: 2024, Номер 67(7), С. 2369 - 2370
Опубликована: Май 22, 2024
Язык: Английский
Процитировано
2Nano Today, Год журнала: 2024, Номер 58, С. 102460 - 102460
Опубликована: Авг. 29, 2024
Язык: Английский
Процитировано
1