Colloids and Surfaces B Biointerfaces, Год журнала: 2024, Номер 248, С. 114468 - 114468
Опубликована: Дек. 20, 2024
Язык: Английский
Colloids and Surfaces B Biointerfaces, Год журнала: 2024, Номер 248, С. 114468 - 114468
Опубликована: Дек. 20, 2024
Язык: Английский
Journal of Energy Storage, Год журнала: 2025, Номер 111, С. 115363 - 115363
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
1Applied Energy, Год журнала: 2025, Номер 383, С. 125346 - 125346
Опубликована: Янв. 17, 2025
Язык: Английский
Процитировано
1Microporous and Mesoporous Materials, Год журнала: 2025, Номер unknown, С. 113510 - 113510
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Separation and Purification Technology, Год журнала: 2025, Номер unknown, С. 132481 - 132481
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Results in Surfaces and Interfaces, Год журнала: 2025, Номер unknown, С. 100505 - 100505
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Nanomaterials, Год журнала: 2025, Номер 15(3), С. 183 - 183
Опубликована: Янв. 24, 2025
Mustard gas (HD) is a well-known chemical warfare agent, recognized for its extreme toxicity and severe hazards. Metal–organic frameworks (MOFs), with their unique structural properties, show significant potential HD adsorption applications. Due to the hazards of HD, most experimental studies focus on simulants, but molecular simulation research these simulants remains limited. Simulation analyses can uncover structure–performance relationships enable validation, optimizing methods, improving material design performance predictions. This study integrates simulations, machine learning (ML), fingerprinting (MFs) identify MOFs high simulant diethyl sulfide (DES), followed by in-depth analysis comparison. First, are categorized into Top, Middle, Bottom materials based efficiency. Univariate analysis, learning, then used compare distinguishing features fingerprints each category. helps optimal ranges Top materials, providing reference initial screening. Machine feature importance combined SHAP identifies key that significantly influence model predictions across categories, offering valuable insights future design. Molecular fingerprint reveals critical combinations, showing optimized when such as metal oxides, nitrogen-containing heterocycles, six-membered rings, C=C double bonds co-exist. The integrated using HTCS, ML, MFs provides new perspectives designing high-performance demonstrates developing CWAs simulants.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Advanced Healthcare Materials, Год журнала: 2025, Номер unknown
Опубликована: Фев. 9, 2025
To overcome the limitations of precise monitoring and inefficient wound exudate management in healing, an advanced multifunctional hydrogel electronics (MHE) platform based on MXene@MOF/Fe3O4@C photonic crystal is developed. This combines optical/electrical sensing, synergistic therapy, real-time visual into a single, efficient system, offering comprehensive solution for healing. Under photothermal stimulation, releases metal ions that generate hydroxyl radicals, effectively eliminating antibiotic-resistant bacteria. Beyond its antibacterial efficacy, this system offers unprecedented through temperature-responsive visualization, while structural color changes upon absorption provide clear indication dressing replacement. By integrating these functionalities, MHE allows control therapeutic process, significantly improving healing treatment monitoring. The platform's sensing capabilities further broaden potential applications across other biomedical fields. breakthrough technology provides clinicians with powerful tool to optimize outcomes, marking major advancement care applications.
Язык: Английский
Процитировано
0Industrial & Engineering Chemistry Research, Год журнала: 2025, Номер 64(9), С. 4637 - 4668
Опубликована: Фев. 24, 2025
This review discusses the transformative impact of convergence artificial intelligence (AI) and laboratory automation on discovery synthesis metal–organic frameworks (MOFs). MOFs, known for their tunable structures extensive applications in fields such as energy storage, drug delivery, environmental remediation, pose significant challenges due to complex processes high structural diversity. Laboratory has streamlined repetitive tasks, enabled high-throughput screening reaction conditions, accelerated optimization protocols. The integration AI, particularly Transformers large language models (LLMs), further revolutionized MOF research by analyzing massive data sets, predicting material properties, guiding experimental design. emergence self-driving laboratories (SDLs), where AI-driven decision-making is coupled with automated experimentation, represents next frontier research. While remain fully realizing potential this synergistic approach, AI heralds a new era efficiency innovation engineering materials.
Язык: Английский
Процитировано
0Inorganic Chemistry Communications, Год журнала: 2025, Номер unknown, С. 114266 - 114266
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0