Dynamic Lone Pairs and Fluoride-Ion Disorder in Cubic-BaSnF4 DOI Creative Commons

Briséïs Mercadier,

Samuel W. Coles, Mathieu Duttine

и другие.

Опубликована: Авг. 1, 2023

Introducing compositional or structural disorder within crystalline solid electrolytes is a common strategy for increasing their ionic conductivity. (M,Sn)F2 fluorites have previously been proposed to exhibit two forms of cationic host frameworks: occupational from randomly distributed M and Sn cations, orientational Sn(II) stereoactive lone pairs. Here, we characterise the structure fluoride-ion–dynamics cubic-BaSnF4, using combination experimental computational techniques. Rietveld refinement XRD data confirms an average fluorite with {Ba,Sn} cation disorder, 119Sn Mo ̈ssbauer spectrum demonstrates presence X-ray total-scattering PDF analysis ab initio molecular dynamics simulations reveal complex local high degree intrinsic fluoride-ion where 1/3 fluoride ions occupy octahedral “interstitial” sites: this consequence repulsion between pairs that destabilises Sn-coordinated tetrahedral sites. Variable-temperature 19F NMR experiments our highly inhomogeneous dynamics, in Sn-rich environments significantly more mobile than those Ba-rich environments. Our also dynamical reorientation biased by configuration coupled dynamics. We end discussing effect host-framework on long-range diffusion pathways cubic BaSnF4 .

Язык: Английский

Robust training of machine learning interatomic potentials with dimensionality reduction and stratified sampling DOI Creative Commons
Ji Qi, Tsz Wai Ko, Brandon C. Wood

и другие.

npj Computational Materials, Год журнала: 2024, Номер 10(1)

Опубликована: Фев. 26, 2024

Abstract Machine learning interatomic potentials (MLIPs) enable accurate simulations of materials at scales beyond that accessible by ab initio methods and play an increasingly important role in the study design materials. However, MLIPs are only as robust data on which they trained. Here, we present DImensionality-Reduced Encoded Clusters with sTratified (DIRECT) sampling approach to select a training set structures from large complex configuration space. By applying DIRECT Materials Project relaxation trajectories dataset over one million 89 elements, develop improved 3-body graph network (M3GNet) universal potential extrapolates more reliably unseen structures. We further show molecular dynamics (MD) M3GNet can be used instead expensive MD rapidly create space for target systems. combined this scheme reliable moment tensor titanium hydrides without need iterative augmentation This work paves way high-throughput development across any compositional complexity.

Язык: Английский

Процитировано

30

Manipulating disorder within cathodes of alkali-ion batteries DOI

Seongkoo Kang,

Suwon Lee,

Hakwoo Lee

и другие.

Nature Reviews Chemistry, Год журнала: 2024, Номер 8(8), С. 587 - 604

Опубликована: Июль 2, 2024

Язык: Английский

Процитировано

19

Halide Heterogeneous Structure Boosting Ionic Diffusion and High‐Voltage Stability of Sodium Superionic Conductors DOI Creative Commons

Jiamin Fu,

Shuo Wang, Duojie Wu

и другие.

Advanced Materials, Год журнала: 2023, Номер 36(3)

Опубликована: Окт. 18, 2023

The development of solid-state sodium-ion batteries (SSSBs) heavily hinges on the an superionic Na

Язык: Английский

Процитировано

25

GPTFF: A high-accuracy out-of-the-box universal AI force field for arbitrary inorganic materials DOI Creative Commons

Fankai Xie,

Tenglong Lu, Sheng Meng

и другие.

Science Bulletin, Год журнала: 2024, Номер 69(22), С. 3525 - 3532

Опубликована: Сен. 1, 2024

This study introduces a novel AI force field, namely graph-based pre-trained transformer field (GPTFF), which can simulate arbitrary inorganic systems with good precision and generalizability. Harnessing large trove of the data attention mechanism algorithms, model accurately predict energy, atomic forces, stress Mean Absolute Error (MAE) values 32 meV/atom, 71 meV/{\AA}, 0.365 GPa, respectively. The dataset used to train includes 37.8 million single-point energies, 11.7 billion pairs, 340.2 stresses. We also demonstrated that GPTFF be universally various physical systems, such as crystal structure optimization, phase transition simulations, mass transport.

Язык: Английский

Процитировано

13

Assessing the accuracy of machine learning interatomic potentials in predicting the elemental orderings: A case study of Li-Al alloys DOI
Yunsheng Liu, Yifei Mo

Acta Materialia, Год журнала: 2024, Номер 268, С. 119742 - 119742

Опубликована: Фев. 7, 2024

Язык: Английский

Процитировано

12

Configurational Disorder, Strong Anharmonicity, and Coupled Host Dynamics Lead to Superionic Transport in Li3YCl6 (LYC) DOI Creative Commons
Ballal Ahammed, Elif Ertekin

Advanced Materials, Год журнала: 2024, Номер 36(16)

Опубликована: Янв. 27, 2024

Abstract In superionic crystals, liquid‐like ionic diffusivities often come hand‐in‐hand with ultra‐low thermal conductivity and soft vibrational dynamics. However, generalized relationships between ion transport dynamics remain elusive due to the diversity of materials complex underlying mechanisms. Here, links in close‐packed lithium halide conductor Li 3 YCl 6 (LYC) are examined using a suite atomistic first‐principles methods. It is shown that configurational disorder, lattice anharmonicity, coupled host‐mobile together induce transition state. Statistical correlations hops activation distribution modes found. typical phenomena associated conductors such as selective breakdown zone‐boundary phonons, or long wavelength transverse acoustic ‘phonon‐liquid‐electron crystal’ concept, not present. Instead, anharmonic aiding diffusion found broaden soften selectively but persist across transition. These couple motion vibrations flexible anion framework, which remains stable facilitates hopping. The results provide insights into how disorder soft‐yet‐resilient enable hopping, particularly 3D crystals.

Язык: Английский

Процитировано

6

Highly reliable and large-scale simulations of promising argyrodite solid-state electrolytes using a machine-learned moment tensor potential DOI
Ji Hoon Kim, Byeongsun Jun,

Yong Jun Jang

и другие.

Nano Energy, Год журнала: 2024, Номер 124, С. 109436 - 109436

Опубликована: Март 2, 2024

Язык: Английский

Процитировано

6

Design of multicomponent argyrodite based on a mixed oxidation state as promising solid-state electrolyte using moment tensor potentials DOI
Ji Won Lee, Ji Hoon Kim, Ji‐Seon Kim

и другие.

Journal of Materials Chemistry A, Год журнала: 2024, Номер 12(12), С. 7272 - 7278

Опубликована: Янв. 1, 2024

Design of multicomponent argyrodite based on the mixed oxidation state as promising solid-state electrolytes using moment tensor potentials.

Язык: Английский

Процитировано

5

Insights into the local structure evolution and thermophysical properties of NaCl–KCl–MgCl2–LaCl3 melt driven by machine learning DOI
Jia Zhao,

Taixi Feng,

Guimin Lu

и другие.

Journal of Materials Chemistry A, Год журнала: 2023, Номер 11(44), С. 23999 - 24012

Опубликована: Янв. 1, 2023

The local structure evolution and thermophysical properties of the NaCl–KCl–MgCl 2 –LaCl 3 melt were thoroughly understood, which facilitates advancement innovation molten salt electrolytic production for Mg–La alloys.

Язык: Английский

Процитировано

10

Optimizing Ionic Transport in Argyrodites: A Unified View on the Role of Sulfur/Halide Distribution and Local Environments DOI Creative Commons
Anastasia K. Lavrinenko, Theodosios Famprikis,

James A. Quirk

и другие.

Journal of Materials Chemistry A, Год журнала: 2024, Номер unknown

Опубликована: Янв. 1, 2024

Understanding diffusion mechanisms in solid electrolytes is crucial for advancing solid-state battery technologies. This study investigates the role of structural disorder Li

Язык: Английский

Процитировано

3