Integrated model construction for state of charge estimation in electric vehicle lithium batteries DOI Creative Commons
Yuanyuan Liu,

Wenxin Dun

Energy Informatics, Год журнала: 2024, Номер 7(1)

Опубликована: Март 14, 2024

Abstract This research addresses the issue of State Charge (SOC) prediction for electric vehicle batteries by employing a dynamic Kalman neural network model. The model is optimized using Genetic algorithm to adjust weights. Additionally, strategy involving support vector machines optimization proposed. involves preprocessing data, selecting appropriate kernel functions training, and merging results enhance stability Results indicated that Dynamic Neural Network (DGKNN) achieved minimum error percentage only 0.1529% when correction coefficient was set 0.7. DGKNN consistently exhibited lowest percentage, average absolute error, mean square root handling small, medium, large datasets. For instance, in small dataset, 0.1518, 0.0604. findings demonstrated proposed high real-time accuracy predicting battery SOC, enabling monitoring operating parameters. method this study can accurately predict state charge, extend life packs, improve performance vehicles. It has important significance promoting development industry.

Язык: Английский

Organic and polymeric cathode materials for metal-ion storage devices: challenges, recent advances, current status, and perspectives DOI

Hadiseh Anavi,

Ali Zardehi‐Tabriz,

Marzieh Golshan

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 124, С. 116785 - 116785

Опубликована: Май 3, 2025

Язык: Английский

Процитировано

0

The ZnMoO4/MoxOy metal-oxygen clusters for the construction of interfacial layers for anode-free aqueous zinc-ion batteries DOI

Weijia Song,

Zhuo Li, Lili Du

и другие.

Journal of Alloys and Compounds, Год журнала: 2025, Номер unknown, С. 181090 - 181090

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Aqueous hybrid battery with dual mechanisms of NH4+ (de)intercalation and I−/I2 redox DOI
W. Wang, Xiaojie Liang, Jiayu Yang

и другие.

Materials Today Communications, Год журнала: 2025, Номер 46, С. 112915 - 112915

Опубликована: Май 23, 2025

Язык: Английский

Процитировано

0

Layered vanadium oxides: Promising cathode materials for calcium-ion batteries DOI
Yuhan Wu, Qing Zhao, Zhijie Wang

и другие.

Chinese Journal of Structural Chemistry, Год журнала: 2024, Номер 43(5), С. 100271 - 100271

Опубликована: Март 13, 2024

Язык: Английский

Процитировано

3

Integrated model construction for state of charge estimation in electric vehicle lithium batteries DOI Creative Commons
Yuanyuan Liu,

Wenxin Dun

Energy Informatics, Год журнала: 2024, Номер 7(1)

Опубликована: Март 14, 2024

Abstract This research addresses the issue of State Charge (SOC) prediction for electric vehicle batteries by employing a dynamic Kalman neural network model. The model is optimized using Genetic algorithm to adjust weights. Additionally, strategy involving support vector machines optimization proposed. involves preprocessing data, selecting appropriate kernel functions training, and merging results enhance stability Results indicated that Dynamic Neural Network (DGKNN) achieved minimum error percentage only 0.1529% when correction coefficient was set 0.7. DGKNN consistently exhibited lowest percentage, average absolute error, mean square root handling small, medium, large datasets. For instance, in small dataset, 0.1518, 0.0604. findings demonstrated proposed high real-time accuracy predicting battery SOC, enabling monitoring operating parameters. method this study can accurately predict state charge, extend life packs, improve performance vehicles. It has important significance promoting development industry.

Язык: Английский

Процитировано

3