The application of artificial intelligence in upper gastrointestinal cancers DOI Creative Commons
Xiaoying Huang,

Minghao Qin,

Mengjie Fang

и другие.

Journal of the National Cancer Center, Год журнала: 2024, Номер 5(2), С. 113 - 131

Опубликована: Дек. 27, 2024

Upper gastrointestinal cancers, mainly comprising esophageal and gastric are among the most prevalent cancers worldwide. There many new cases of upper annually, survival rate tends to be low. Therefore, timely screening, precise diagnosis, appropriate treatment strategies, effective prognosis crucial for patients with cancers. In recent years, an increasing number studies suggest that artificial intelligence (AI) technology can effectively address clinical tasks related These focus on four aspects: treatment, prognosis. this review, we application AI in Firstly, basic pipelines radiomics deep learning medical image analysis were introduced. Furthermore, separately reviewed aforementioned aspects both Finally, current limitations challenges faced field summarized, explorations conducted selection algorithms various scenarios, popularization early applications AI, large multimodal models.

Язык: Английский

Rapid diagnosis of bacterial vaginosis using machine-learning-assisted surface-enhanced Raman spectroscopy of human vaginal fluids DOI Creative Commons

Xin‐Ru Wen,

Jia‐Wei Tang, Jie Chen

и другие.

mSystems, Год журнала: 2024, Номер unknown

Опубликована: Дек. 10, 2024

Bacterial vaginosis (BV) is an abnormal gynecological condition caused by the overgrowth of specific bacteria in vagina. This study aims to develop a novel method for BV detection integrating surface-enhanced Raman scattering (SERS) with machine learning (ML) algorithms. Vaginal fluid samples were classified as positive or negative using BVBlue Test and clinical microscopy, followed SERS spectral acquisition construct data set. Preliminary analysis revealed notable disparities characteristic peak features. Multiple ML models constructed optimized, convolutional neural network (CNN) model achieving highest prediction accuracy at 99%. Gradient-weighted class activation mapping (Grad-CAM) was used highlight important regions images prediction. Moreover, CNN blindly tested on spectra vaginal collected from 40 participants unknown infection status, 90.75% compared results combined microscopy. technique simple, cheap, rapid accurately diagnosing bacterial vaginosis, potentially complementing current diagnostic methods laboratories.

Язык: Английский

Процитировано

2

Isotope labeled 3D-Raman confocal imaging and atomic force microscopy study on epithelial cells interacting with the fungus Candida albicans DOI
Sarmiza Elena Stanca, Selene Mogavero, Wolfgang Fritzsche

и другие.

Nanomedicine Nanotechnology Biology and Medicine, Год журнала: 2024, Номер 59, С. 102750 - 102750

Опубликована: Май 9, 2024

Язык: Английский

Процитировано

1

Phenotypic and genotypic perspectives on detection methods for bacterial antimicrobial resistance in a One Health context: research progress and prospects DOI

Bingbing Yang,

Xiaoqi Xin,

Xiaoqing Cao

и другие.

Archives of Microbiology, Год журнала: 2024, Номер 206(10)

Опубликована: Сен. 20, 2024

Язык: Английский

Процитировано

1

Classification of Vaginal Cleanliness Grades through Surface‐Enhanced Raman Spectral Analysis via The Deep‐Learning Variational Autoencoder–Long Short‐Term Memory Model DOI Creative Commons
Jia‐Wei Tang,

Xin‐Ru Wen,

Huimin Chen

и другие.

Advanced Intelligent Systems, Год журнала: 2024, Номер unknown

Опубликована: Окт. 28, 2024

In this study, it is aimed to establish a novel method based on deep‐learning‐guided surface‐enhanced Raman spectroscopy (SERS) technique achieve rapid and accurate classification of vaginal cleanliness levels. We proposed variational autoencoder (VAE) approach enhance spectral quality, coupled with deep learning algorithm long short‐term memory (LSTM) neural network analyze SERS spectra produced by secretions. The performance various machine (ML) algorithms assessed using multiple evaluation metrics. Finally, the reliability optimal model tested blind test data ( N = 10/group for each level). quality fingerprints four types secretions significantly improved after VAE decoding reconstruction. signal‐to‐noise ratio generated increased from original 2.58–11.13. Among all algorithms, VAE–LSTM demonstrates best prediction ability time efficiency. Additionally, datasets yielded an overall accuracy 85%. concluded that holds significant potential in rapidly distinguishing between different levels through human secretion samples. This contributes efficient diagnosis clinical settings.

Язык: Английский

Процитировано

1

Temporal Convolutional Network on Raman Shift for Human Osteoblast Cells Fingerprint Analysis1,2,3 DOI Creative Commons
Dario Morganti, Maria Giovanna Rizzo, Massimo Orazio Spata

и другие.

Intelligence-Based Medicine, Год журнала: 2024, Номер 10, С. 100183 - 100183

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Research progress and application of bacterial traceability technology DOI

Wei Wang,

Bin Zhao, Hanyu Zhang

и другие.

Forensic Science International, Год журнала: 2024, Номер 365, С. 112275 - 112275

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0

Identification of structural stability and fragility of mouse liver glycogen via label-free Raman spectroscopy coupled with convolutional neural network algorithm DOI
Liang Wang,

Zhang-Wen Ma,

Jia‐Wei Tang

и другие.

International Journal of Biological Macromolecules, Год журнала: 2024, Номер 286, С. 138340 - 138340

Опубликована: Дек. 3, 2024

Язык: Английский

Процитировано

0

Entropy driven-based catalytic biosensors for bioanalysis: From construction to application-A review DOI
Sha Yang,

Xinyu Zhan,

Lin Yuan

и другие.

Analytica Chimica Acta, Год журнала: 2024, Номер 1338, С. 343549 - 343549

Опубликована: Дек. 20, 2024

Язык: Английский

Процитировано

0

The application of artificial intelligence in upper gastrointestinal cancers DOI Creative Commons
Xiaoying Huang,

Minghao Qin,

Mengjie Fang

и другие.

Journal of the National Cancer Center, Год журнала: 2024, Номер 5(2), С. 113 - 131

Опубликована: Дек. 27, 2024

Upper gastrointestinal cancers, mainly comprising esophageal and gastric are among the most prevalent cancers worldwide. There many new cases of upper annually, survival rate tends to be low. Therefore, timely screening, precise diagnosis, appropriate treatment strategies, effective prognosis crucial for patients with cancers. In recent years, an increasing number studies suggest that artificial intelligence (AI) technology can effectively address clinical tasks related These focus on four aspects: treatment, prognosis. this review, we application AI in Firstly, basic pipelines radiomics deep learning medical image analysis were introduced. Furthermore, separately reviewed aforementioned aspects both Finally, current limitations challenges faced field summarized, explorations conducted selection algorithms various scenarios, popularization early applications AI, large multimodal models.

Язык: Английский

Процитировано

0