Growth characteristics based multi-class kiwifruit bud detection with overlap-partitioning algorithm for robotic thinning DOI

Haojie Dang,

Leilei He,

Yufei Shi

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109715 - 109715

Опубликована: Дек. 6, 2024

Язык: Английский

Morphological estimation of primary branch length of individual apple trees during the deciduous period in modern orchard based on PointNet++ DOI
Xiaoming Sun,

Leilei He,

Hanhui Jiang

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 220, С. 108873 - 108873

Опубликована: Апрель 6, 2024

Язык: Английский

Процитировано

10

A robust vision system for measuring and positioning green asparagus based on YOLO-seg and 3D point cloud data DOI
Chen Chen, Jing Li, Binglin Liu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 230, С. 109937 - 109937

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

2

An overview of recent advancements in hyperspectral imaging in the egg and hatchery industry DOI Creative Commons
Md Wadud Ahmed, Alin Khaliduzzaman, J.L. Emmert

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 230, С. 109847 - 109847

Опубликована: Дек. 18, 2024

Язык: Английский

Процитировано

9

Advancements in artificial pollination of crops: from manual to autonomous DOI

Leilei He,

Xiaojuan Liu, Yezhang Ding

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 231, С. 110067 - 110067

Опубликована: Фев. 5, 2025

Язык: Английский

Процитировано

1

End-to-end stereo matching network with two-stage partition filtering for full-resolution depth estimation and precise localization of kiwifruit for robotic harvesting DOI

Xudong Jing,

Hanhui Jiang,

Shiao Niu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 225, С. 109333 - 109333

Опубликована: Авг. 20, 2024

Язык: Английский

Процитировано

4

YOLOv8n-DDA-SAM: Accurate Cutting-Point Estimation for Robotic Cherry-Tomato Harvesting DOI Creative Commons
Gengming Zhang, Hao Cao, Yangwen Jin

и другие.

Agriculture, Год журнала: 2024, Номер 14(7), С. 1011 - 1011

Опубликована: Июнь 26, 2024

Accurately identifying cherry-tomato picking points and obtaining their coordinate locations is critical to the success of robots. However, previous methods for semantic segmentation alone or combining object detection with traditional image processing have struggled accurately determine point due challenges such as leaves well targets that are too small. In this study, we propose a YOLOv8n-DDA-SAM model adds branch target achieve desired compute point. To be specific, YOLOv8n used initial model, dynamic snake convolutional layer (DySnakeConv) more suitable stems in neck model. addition, large kernel attention mechanism adopted backbone use ADown convolution resulted better fusion stem features certain decrease number parameters without loss accuracy. Combined SAM, mask effectively obtained then accurate by simple shape-centering calculation. As suggested experimental results, proposed significantly improved from models not only detecting but also stem’s masks. [email protected] F1-score, achieved 85.90% 86.13% respectively. Compared original YOLOv8n, YOLOv7, RT-DETR-l YOLOv9c, has 24.7%, 21.85%, 19.76%, 15.99% F1-score increased 16.34%, 12.11%, 10.09%, 8.07% respectively, 6.37M. branch, does it need produce relevant datasets, its mIOU 11.43%, 6.94%, 5.53%, 4.22% 12.33%, 7.49%, 6.4%, 5.99% compared Deeplabv3+, Mask2former, DDRNet SAN summary, can satisfy requirements high-precision provides strategy system cherry-tomato.

Язык: Английский

Процитировано

3

Advances in Object Detection and Localization Techniques for Fruit Harvesting Robots DOI Creative Commons
Xiaojie Shi, Shaowei Wang, Bo Zhang

и другие.

Agronomy, Год журнала: 2025, Номер 15(1), С. 145 - 145

Опубликована: Янв. 9, 2025

Due to the short time, high labor intensity and workload of fruit vegetable harvesting, robotic harvesting instead manual operations is future. The accuracy object detection location directly related picking efficiency, quality speed fruit-harvesting robots. Because its low recognition accuracy, slow poor localization traditional algorithm cannot meet requirements automatic-harvesting increasingly evolving powerful deep learning technology can effectively solve above problems has been widely used in last few years. This work systematically summarizes analyzes about 120 literatures on three-dimensional positioning algorithms robots over 10 years, reviews several significant methods. difficulties challenges faced by current are proposed from aspects lack large-scale high-quality datasets, complexity agricultural environment, etc. In response challenges, corresponding solutions future development trends constructively proposed. Future research technological should first these using weakly supervised learning, efficient lightweight model construction, multisensor fusion so on.

Язык: Английский

Процитировано

0

A Novel Multinozzle Targeting Pollination Robot for Clustered Kiwifruit Flowers Based on Air–Liquid Dual‐Flow Spraying DOI Open Access

Changqing Gao,

Leilei He,

Yezhang Ding

и другие.

Journal of Field Robotics, Год журнала: 2025, Номер unknown

Опубликована: Янв. 19, 2025

ABSTRACT Manual pollination of kiwifruit flowers is a labor‐intensive work that highly desired to be replaced by robotic operations. In this research, robot was developed achieve precision clustered in the orchard. The consists five systems, including multinozzle end‐effector, mechanical arm, vision system, crawler‐type chassis, and control system. can select preferential then target their pistil pollination. First, statistical analysis dimensions flower clusters individual conducted fit normal distribution curves, which guided design spray coverage combination intervals for end‐effector. Second, optimal parameters were determined based on three‐factor, five‐level quadratic orthogonal experiment, is, air pressure 70.4 kPa, rate flow 86.0 mL/min, distance 27.8 cm. A targeted strategy selection structure Field experiments commercial orchard evaluate its feasibility performance, an average success targeting 93.4% at speed 1.0 s per achieved. Furthermore, compared with artificial assisted methods, it improve utilization pollen consumption 0.20 g every 60 fruit set 88.9%. validations demonstrated efficiently pollinate save pollen.

Язык: Английский

Процитировано

0

Yield estimation in precision viticulture by combining deep segmentation and depth-based clustering DOI Creative Commons
Rosa Pia Devanna, Laura Romeo, Giulio Reina

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 232, С. 110025 - 110025

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

0

Growth characteristics based multi-class kiwifruit bud detection with overlap-partitioning algorithm for robotic thinning DOI

Haojie Dang,

Leilei He,

Yufei Shi

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109715 - 109715

Опубликована: Дек. 6, 2024

Язык: Английский

Процитировано

1