Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 38 - 55
Опубликована: Янв. 1, 2025
Язык: Английский
Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 38 - 55
Опубликована: Янв. 1, 2025
Язык: Английский
Computer Graphics Forum, Год журнала: 2025, Номер unknown
Опубликована: Апрель 16, 2025
Abstract We demonstrate generating HDR images using the concerted action of multiple black‐box, pre‐trained LDR image diffusion models. Common models are not as, first, there is no sufficiently large dataset available to re‐train them, and, second, even if it was, re‐training such impossible for most compute budgets. Instead, we seek inspiration from capture literature that traditionally fuses sets images, called “exposure brackets”, produce a single image. operate denoising processes generate brackets together form valid result. To this end, introduce consistency term into process couple they agree across exposure range share. versions state‐of‐the‐art unconditional and conditional as well restoration‐type (LDR2HDR) generative modeling.
Язык: Английский
Процитировано
1Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 38 - 55
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0