2021 IEEE International Conference on Big Data (Big Data), Год журнала: 2024, Номер unknown, С. 2110 - 2118
Опубликована: Дек. 15, 2024
Язык: Английский
2021 IEEE International Conference on Big Data (Big Data), Год журнала: 2024, Номер unknown, С. 2110 - 2118
Опубликована: Дек. 15, 2024
Язык: Английский
Applied Sciences, Год журнала: 2025, Номер 15(9), С. 4612 - 4612
Опубликована: Апрель 22, 2025
Zero-shot stance detection aims to identify the expressed in social media text aimed at specific targets without relying on annotated data. However, due insufficient contextual information and inherent ambiguity of language, this task faces numerous challenges low-resource scenarios. This work proposes a novel zero-shot method based multi-agent debate (ZSMD) address aforementioned challenges. Specifically, we construct two debater agents representing supporting opposing stances. A knowledge enhancement module supplements original tweet target with relevant background knowledge, providing richer support for argument generation. Subsequently, engage over predetermined number rounds, employing rebuttal strategies such as factual verification, logical analysis, sentiment analysis. If no consensus is reached within specified referee agent synthesizes process input deliver final determination. We evaluate ZSMD benchmark datasets, SemEval-2016 Task 6 P-Stance, compare it against strong baselines MB-Cal COLA. The experimental results show that not only achieves higher accuracy than these baselines, but also provides deeper insights into subtle differences opinion expression, highlighting potential structured argumentation settings.
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 130490 - 130490
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
02021 IEEE International Conference on Big Data (Big Data), Год журнала: 2024, Номер unknown, С. 2110 - 2118
Опубликована: Дек. 15, 2024
Язык: Английский
Процитировано
1