Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2023
By leveraging the capabilities of machine intelligence, metaheuristics can be enhanced to achieve improved performance and convergence. This chapter presents an investigation into dynamic scenarios for utilizing intelligence in metaheuristics, focusing on their application optimization problems. The main contribution this research lies proposal evaluation five distinct methods within (DI) using learning (ML) cross-entropy (CE) framework. These include ML cooperation full or fixed number iterations, adaptive usage, performance-based decision-making, randomized usage. Through extensive experimentation, DICE framework is applied solve various benchmark truss problems involving frequency constraints size/shape variables. Prototypes such as 10-bar planner truss, 72-bar space 120-bar dome, 37-bar bridge, 52-bar dome are considered. Comparative evaluations against competing techniques conducted assess effectiveness efficiency proposed methods. findings indicate fast optimum
Язык: Английский
Процитировано
7Опубликована: Янв. 1, 2023
An improved bilinear fuzzy genetic algorithm (BFGA) is introduced in this chapter for the design optimization of steel structures with semi-rigid connections. Semi-rigid connections provide a compromise between stiffness fully rigid and flexibility pinned However, designing such challenging due to nonlinear behavior The BFGA robust method that combines strengths logic handle complexity uncertainties structural problems. BFGA, compared standard GA, demonstrated generate high-quality solutions reasonable time. application through connections, considering weight performance criteria. results show proposed capable finding optimal designs satisfy all requirements constraints. approach provides promising solution complex behavior.
Язык: Английский
Процитировано
7The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 133(11-12), С. 5529 - 5552
Опубликована: Июль 4, 2024
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
An improved bilinear fuzzy genetic algorithm (BFGA) is introduced in this chapter for the design optimization of steel structures with semi-rigid connections. Semi-rigid connections provide a compromise between stiffness fully rigid and flexibility pinned However, designing such challenging due to nonlinear behavior The BFGA robust method that combines strengths logic handle complexity uncertainties structural problems. BFGA, compared standard GA, demonstrated generate high-quality solutions reasonable time. application through semirigid connections, considering weight performance criteria. results show proposed capable finding optimal designs satisfy all requirements constraints. approach provides promising solution complex behavior.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0