
Опубликована: Апрель 20, 2024
Язык: Английский
Опубликована: Апрель 20, 2024
Язык: Английский
Bulletin of Engineering Geology and the Environment, Год журнала: 2025, Номер 84(3)
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
2Ecological Informatics, Год журнала: 2024, Номер 85, С. 102933 - 102933
Опубликована: Дек. 7, 2024
Язык: Английский
Процитировано
11Theoretical and Applied Climatology, Год журнала: 2024, Номер 155(6), С. 5279 - 5296
Опубликована: Апрель 3, 2024
Язык: Английский
Процитировано
10Computers and Electronics in Agriculture, Год журнала: 2024, Номер 222, С. 109036 - 109036
Опубликована: Май 21, 2024
Язык: Английский
Процитировано
6Applied Computing and Geosciences, Год журнала: 2024, Номер 24, С. 100206 - 100206
Опубликована: Ноя. 9, 2024
Язык: Английский
Процитировано
6Water Practice & Technology, Год журнала: 2024, Номер 19(7), С. 2655 - 2672
Опубликована: Июнь 4, 2024
ABSTRACT Accurate prediction of pan evaporation and mean temperature is crucial for effective water resources management, influencing the hydrological cycle impacting availability. This study focused on New Delhi's semi-arid climate, data spanning 31 years (1990–2020) were used to predict these variables using advanced algorithms such as Bagging, Random Subspace (RSS), M5P, REPTree. The models rigorously evaluated 10 performance metrics, including correlation coefficient, absolute error (MAE), Nash–Sutcliffe Efficiency (NSE) model coefficient. Bagging emerged best with indices values r, MAE, RMSE, RAE, RRSE, MBE NSE, d, KGE, MAPE 0.86, 0.76, 1.43, 32.70, 49.44, 0.03, 0.85, 0.96, 0.90, 22.0, respectively, during testing phase prediction. In predicting temperature, reported results 0.90 phase. These findings offer valuable insights enhancing relative humidity in diverse climatic conditions. model's robust underscores its potential application resource management.
Язык: Английский
Процитировано
4Theoretical and Applied Climatology, Год журнала: 2025, Номер 156(2)
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2025, Номер 7(4)
Опубликована: Апрель 11, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 30, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 8, 2025
An accurate energy consumption prediction becomes crucial with increasing electric vehicle usage for effective power grid management. This research examined the performance of eleven machine learning models this purpose: Ridge Regression, Lasso K-Nearest Neighbors, Gradient Boosting, Support Vector Multi-Layer Perceptron, XGBoost, CatBoost, LightGBM, Gaussian Processes Regression(GPR) and Extra Trees Regressor, considering real historical data from Colorado. The were evaluated using different metrics: Mean Absolute Error (MAE), Squared (MSE), R², Root Error(RMSE) Normalized Error(NRMSE), visual analyses through scatter plots time series plots. best model observed was which had an MAE 0.5888, MSE 3.2683, R² value 0.9592, RMSE 1.8078 NRMSE 0.020. Boosting KNN also returned good results, although they slightly more dispersed. Nevertheless, while non-linear like MLP, LightGBM linear such as Regression offer valuable insights, exhibit shortcomings in estimating energy, especially at extreme levels, highlighting limitations capturing complex interactions. study focuses on their applicability to projections demonstrate how well ensemble may capture intricate patterns series. These cutting-edge techniques might greatly enhance demand predictions.
Язык: Английский
Процитировано
0