
Опубликована: Апрель 20, 2024
Язык: Английский
Опубликована: Апрель 20, 2024
Язык: Английский
Ecological Informatics, Год журнала: 2024, Номер 85, С. 102933 - 102933
Опубликована: Дек. 7, 2024
Язык: Английский
Процитировано
12Theoretical and Applied Climatology, Год журнала: 2024, Номер 155(6), С. 5279 - 5296
Опубликована: Апрель 3, 2024
Язык: Английский
Процитировано
10Bulletin of Engineering Geology and the Environment, Год журнала: 2025, Номер 84(3)
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
2Applied Computing and Geosciences, Год журнала: 2024, Номер 24, С. 100206 - 100206
Опубликована: Ноя. 9, 2024
Язык: Английский
Процитировано
7Computers and Electronics in Agriculture, Год журнала: 2024, Номер 222, С. 109036 - 109036
Опубликована: Май 21, 2024
Язык: Английский
Процитировано
6Water Practice & Technology, Год журнала: 2024, Номер 19(7), С. 2655 - 2672
Опубликована: Июнь 4, 2024
ABSTRACT Accurate prediction of pan evaporation and mean temperature is crucial for effective water resources management, influencing the hydrological cycle impacting availability. This study focused on New Delhi's semi-arid climate, data spanning 31 years (1990–2020) were used to predict these variables using advanced algorithms such as Bagging, Random Subspace (RSS), M5P, REPTree. The models rigorously evaluated 10 performance metrics, including correlation coefficient, absolute error (MAE), Nash–Sutcliffe Efficiency (NSE) model coefficient. Bagging emerged best with indices values r, MAE, RMSE, RAE, RRSE, MBE NSE, d, KGE, MAPE 0.86, 0.76, 1.43, 32.70, 49.44, 0.03, 0.85, 0.96, 0.90, 22.0, respectively, during testing phase prediction. In predicting temperature, reported results 0.90 phase. These findings offer valuable insights enhancing relative humidity in diverse climatic conditions. model's robust underscores its potential application resource management.
Язык: Английский
Процитировано
4Frontiers in Plant Science, Год журнала: 2024, Номер 15
Опубликована: Окт. 16, 2024
Accurate estimation of chlorophyll is essential for monitoring maize health and growth, which hyperspectral imaging provides rich data. In this context, paper presents an innovative method to estimate by combining indices advanced machine learning models. The methodology study focuses on the development models using proprietary corn content. Six were used, including robust linear stepwise regression, support vector machines (SVM), fine Gaussian SVM, Matern 5/2 three-layer neural network. MRMR algorithm was integrated into process improve feature selection identifying most informative spectral bands, thereby reducing data redundancy improving model performance. results showed significant differences in performance six applied estimation. Among models, regression highest prediction accuracy. achieved R 2 = 0.71 training set, RMSE 338.46 µg/g MAE 264.30 µg/g. case validation further improved its performance, reaching =0.79, RMSE=296.37 µg/g, MAE=237.12 These metrics show that Matern’s combined with select optimal traits highly effective predicting This research has important implications precision agriculture, particularly real-time management crop health. allows farmers take timely targeted action.
Язык: Английский
Процитировано
3Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109667 - 109667
Опубликована: Дек. 9, 2024
Язык: Английский
Процитировано
3Theoretical and Applied Climatology, Год журнала: 2025, Номер 156(2)
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2025, Номер 7(4)
Опубликована: Апрель 11, 2025
Язык: Английский
Процитировано
0