Multi‐Stage Auxiliary Model Based Recursive Least Squares Estimation for Pseudo‐Linear System With ARMA Noise DOI
Shun An, Shuang‐Nan Zhang, Yang Liu

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2025, Номер unknown

Опубликована: Апрель 21, 2025

ABSTRACT This paper focuses on the parameter estimation problem for pseudo‐linear systems with autoregressive moving average noise. In order to reduce computational complexity of identification algorithms, original system is decomposed into three submodels and a three‐stage auxiliary model‐based recursive generalized extended least squares (3S‐AM‐RGELS) algorithm proposed based hierarchical principle. The convergence analysis provided show that error can converge zero under presented 3S‐AM‐RGELS algorithm. Finally, numerical simulations demonstrate effectiveness algorithms.

Язык: Английский

Auxiliary Model‐Based Maximum Likelihood Multi‐Innovation Forgetting Gradient Identification for a Class of Multivariable Systems DOI Open Access
Huihui Wang, Ximei Liu

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Янв. 29, 2025

ABSTRACT Through dividing a multivariable system into several subsystems, this paper derives the sub‐identification model. Utilizing obtained model, an auxiliary model‐based maximum likelihood forgetting gradient algorithm is derived. Considering enhancing parameter estimation accuracy, multi‐innovation (AM‐ML‐MIFG) proposed taking advantage of identification theory. Simulation results test effectiveness algorithms, and confirm that AM‐ML‐MIFG has satisfactory performance in capturing dynamic properties system.

Язык: Английский

Процитировано

3

Highly Efficient Two-Stage Filtering-Based Maximum Likelihood Stochastic Gradient Algorithm for Multiple-Input Multiple-Output Systems DOI
Huihui Wang, Ximei Liu

Circuits Systems and Signal Processing, Год журнала: 2025, Номер unknown

Опубликована: Март 22, 2025

Язык: Английский

Процитировано

2

Highly efficient three-stage maximum likelihood recursive least squares identification method for multiple-input multiple-output systems DOI
Huihui Wang, Ximei Liu

Systems & Control Letters, Год журнала: 2025, Номер 200, С. 106094 - 106094

Опубликована: Апрель 6, 2025

Язык: Английский

Процитировано

2

Multi‐Innovation Gradient Identification Methods for Bilinear Output‐Error Systems DOI Open Access
Meihang Li, Ximei Liu, Yamin Fan

и другие.

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Март 13, 2025

ABSTRACT This article addresses the parameter estimation problems of bilinear output‐error systems, and auxiliary model identification idea particle filtering technique are adopted to overcome obstacle resulting from unknown true outputs. Then a filtering‐based forgetting factor stochastic gradient algorithm is proposed for systems. To enhance convergence rate accuracy estimation, we expand scalar innovation an vector develop multi‐innovation algorithm. Finally, numerical example practical continuous stirred tank reactor process provided show that discussed methods work well. The results indicate algorithms effective identifying systems can generate more accurate estimates than model‐based

Язык: Английский

Процитировано

1

Hierarchical Newton iterative identification methods for a class of input multi-piecewise Hammerstein models with autoregressive noise DOI
Yamin Fan, Ximei Liu, Meihang Li

и другие.

Mathematics and Computers in Simulation, Год журнала: 2025, Номер 237, С. 247 - 262

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

1

An attention mechanism augmented CNN-GRU method integrating optimized variational mode decomposition and frequency feature classification for complex signal forecasting DOI
Congxin Wei,

Zheng Quan,

Zhifeng Qian

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126464 - 126464

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A novel filtering-based recursive identification method for a fractional-order Hammerstein state space system with piecewise nonlinearity DOI

Hongguang Lang,

Yiqun Bi,

Meihang Li

и другие.

Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, Год журнала: 2025, Номер unknown

Опубликована: Янв. 28, 2025

This paper investigates parameters and states estimation for a class of fractional-order state space systems with colored noises. To provide accurate parameter estimation, we suggest novel gradient descent algorithm based on the extended Kalman filtering. The new approach features lower error variances faster convergence rate than conventional algorithm. A data filtering is introduced to filter input output data, thereby reducing impact noises accuracy estimates.

Язык: Английский

Процитировано

0

Robust recursive estimation for the errors-in-variables nonlinear systems with impulsive noise DOI Creative Commons
Xuehai Wang, Fang Zhu

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Фев. 19, 2025

The non-Gaussian characteristic of the external disturbance poses a great challenge for system modeling and identification. This paper develops robust recursive estimation algorithm errors-in-variables nonlinear with impulsive noise. is formulated by minimizing continuous logarithmic mixed p-norm criterion, capable giving against noise through an adjustable weight gain. monomials noisy input are estimated expressions based on bias correction. Furthermore, hierarchical derived to reduce computational loads. simulation studies demonstrate feasibility proposed algorithms.

Язык: Английский

Процитировано

0

Recursive Parameter Estimation of Fractional Order Hammerstein Output Error Autoregressive Model DOI
Yanan Li, Junhong Li, Fuchao Li

и другие.

Circuits Systems and Signal Processing, Год журнала: 2025, Номер unknown

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

Adaptive fuzzy event-triggered fast fixed-time filtering backstepping formation control for underactuated USVs with LOS range and bearing angle constraints DOI
Shun An, Shuang‐Nan Zhang, Liu Yang

и другие.

Ocean Engineering, Год журнала: 2025, Номер 325, С. 120674 - 120674

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

0