Опубликована: Янв. 1, 2024
Язык: Английский
The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown
Опубликована: Июль 8, 2024
Язык: Английский
Процитировано
19The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 132(11-12), С. 5803 - 5821
Опубликована: Май 7, 2024
Язык: Английский
Процитировано
6Tribology International, Год журнала: 2024, Номер 198, С. 109860 - 109860
Опубликована: Июнь 13, 2024
Язык: Английский
Процитировано
6The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 21, 2024
Язык: Английский
Процитировано
6Sustainable materials and technologies, Год журнала: 2023, Номер 38, С. e00756 - e00756
Опубликована: Окт. 28, 2023
Язык: Английский
Процитировано
12Jordan Journal of Mechanical and Industrial Engineering, Год журнала: 2024, Номер 18(01), С. 179 - 190
Опубликована: Фев. 29, 2024
The paper has a dual purpose: firstly, to examine the influence of various cutting conditions (cutting speed , feed depth cut tool nose radius ɛ and edge angle ) on quality machined parts (), tangential force ( power during turning process polyoxymethylene POM-C.Two carbide inserts, SPMR 120304 120308, were used for three-dimensional operations.Secondly, goal is identify optimal that maximize material removal rate () while minimizing three output parameters (, ).The study employed analysis variance (ANOVA) assess significance input desired outcomes utilized an artificial neural network (ANN) create mathematical models.The K-fold Cross-Validation approach was deemed suitable due its efficiency in requiring fewer experiments.To optimize conditions, new metaheuristic optimization algorithm called Multi-Objective Artificial Hummingbird Algorithm (MOAHA) selected.ANOVA reveals factors contribute 58.05% 32.25%, respectively, response .Classical ,, also impact mechanical actions MOAHA algorithm, coupled with four ANN models, optimized five resulting values = 250 /, 0.08 1.3 0.8 75°.Under these responses are: 0.6 µ, 21.51, 60.24, 26.38 3 /.The ANN-MOAHA coupling provides excellent, simple, fast computer multi-objective optimization.
Язык: Английский
Процитировано
3Physchem, Год журнала: 2024, Номер 4(4), С. 495 - 523
Опубликована: Дек. 3, 2024
In today’s tech world of digitalization, engineers are leveraging tools such as artificial intelligence for analyzing data in order to enhance their capability evaluating product quality effectively. This research study adds value by applying algorithms and various machine learning techniques—such support vector regression, Gaussian process neural networks—on a dataset related the grinding UNS S34700 steel. What sets this apart is its consideration factors like three types wheels, four distinct cooling solutions, seven varied depths cut. These parameters assessed impact on surface roughness forces, resulting conversion information into insights. A relational equation with 25 coefficients developed, using optimized predict an 85 percent accuracy forces 90 rate. Learning from models regression exhibited stability, R2 0.98 mean 93 percent. Artificial networks achieved 0.96, rate findings suggest that techniques versatile precise when dealing datasets. They align well digitalization predictive trends. conclusion; provides flexibility superior predicting trends compared formulaic approach, which contained existing datasets only. The versatility highlights significance engineering practices making data-informed decisions.
Язык: Английский
Процитировано
3Journal of Materials Research and Technology, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Firat University Journal of Experimental and Computational Engineering, Год журнала: 2025, Номер 4(1), С. 85 - 99
Опубликована: Фев. 18, 2025
Tire failures pose significant safety risks, necessitating advanced inspection techniques. This research investigates the application of magnetic sensors and deep learning for detecting defects in steel belts tires. It was aim to develop a robust accurate fault detection system by measuring field variations caused defects. In this study, image sensor circuit had been designed then images obtained from it have classified as none, crack, delamination type belt errors. Various models their hybrid architectures, were explored compared. Experimental results demonstrate that all exhibit strong performance, with Transformer model achieving highest accuracy 96.12%. The developed offers potential solution improving tire reducing maintenance costs industries.
Язык: Английский
Процитировано
0The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown
Опубликована: Март 22, 2025
Язык: Английский
Процитировано
0