Journal of Intelligent Manufacturing, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 24, 2024
Язык: Английский
Journal of Intelligent Manufacturing, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 24, 2024
Язык: Английский
International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 26
Опубликована: Янв. 13, 2025
Considering the complexities, risks, and uncertainties of disassembling large end-of-life (EOL) products such as cars buses, a two-sided human-robot disassembly line can utilise both sides workstations to enhance efficiency, improve safety, increase revenue. This paper develops cooperation partial balancing model (TPDLB-HRC) minimise energy consumption maximise net revenue by addressing four interrelated sub-problems: planning sequences, selecting tasks, assigning tasks mated-stations, allocating resources. In addition, new reinforcement-learning multi-objective evolutionary algorithm based on decomposition (NRL-MOEA/D) is developed, integrating an encoding/decoding scheme, reinforcement learning, problem characteristics, coevolution between sub-problems address above challenges. The effectiveness superiority designed NRL-MOEA/D in solving various cases are tested comparing it with eleven algorithms. Finally, applicability proposed method verified series EOL examples, trade-offs made under different recycling profits guide decision-makers constructing schemes real situations.
Язык: Английский
Процитировано
3Automation in Construction, Год журнала: 2024, Номер 167, С. 105723 - 105723
Опубликована: Авг. 27, 2024
Язык: Английский
Процитировано
11The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown
Опубликована: Фев. 14, 2025
Язык: Английский
Процитировано
0The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown
Опубликована: Март 27, 2025
Язык: Английский
Процитировано
0Performance Improvement Journal, Год журнала: 2025, Номер unknown
Опубликована: Апрель 4, 2025
Maturity models have served as significant tools for organizations to evaluate and improve processes performance across various domains. These generally define levels of progression from initial or ad hoc optimized, well-managed levels. The growing influence artificial intelligence (AI) technologies has reshaped how maturity are developed, implemented, improved. This paper explores the impacts AI on creation evolution models. Current technological trends accelerate model customization, increase predictive accuracy, enable real-time feedback loops. analysis identifies two foundational an example through fourth industrial revolution. exploration further implications software development manufacturing industries focus can help assess their current predict steps needed reach higher performance. work serves first part in a series that addresses human-centric
Язык: Английский
Процитировано
0Journal of Intelligent Manufacturing, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 24, 2024
Язык: Английский
Процитировано
1