European Journal of Nuclear Medicine and Molecular Imaging, Год журнала: 2022, Номер 49(11), С. 3717 - 3739
Опубликована: Апрель 22, 2022
Язык: Английский
European Journal of Nuclear Medicine and Molecular Imaging, Год журнала: 2022, Номер 49(11), С. 3717 - 3739
Опубликована: Апрель 22, 2022
Язык: Английский
Physica Medica, Год журнала: 2021, Номер 83, С. 122 - 137
Опубликована: Март 1, 2021
This review sets out to discuss the foremost applications of artificial intelligence (AI), particularly deep learning (DL) algorithms, in single-photon emission computed tomography (SPECT) and positron (PET) imaging. To this end, underlying limitations/challenges these imaging modalities are briefly discussed followed by a description AI-based solutions proposed address challenges. will focus on mainstream generic fields, including instrumentation, image acquisition/formation, reconstruction low-dose/fast scanning, quantitative imaging, interpretation (computer-aided detection/diagnosis/prognosis), as well internal radiation dosimetry. A brief algorithms fundamental architectures used for is also provided. Finally, challenges, opportunities, barriers full-scale validation adoption improvement quality accuracy PET SPECT images clinic discussed.
Язык: Английский
Процитировано
209Nature Biomedical Engineering, Год журнала: 2023, Номер 7(8), С. 1028 - 1039
Опубликована: Июль 3, 2023
Язык: Английский
Процитировано
49Radiological Physics and Technology, Год журнала: 2024, Номер 17(1), С. 24 - 46
Опубликована: Фев. 6, 2024
This review focuses on positron emission tomography (PET) imaging algorithms and traces the evolution of PET image reconstruction methods. First, we provide an overview conventional methods from filtered backprojection through to recent iterative algorithms, then deep learning for data up latest innovations within three main categories. The first category involves post-processing denoising. second comprises direct that learn mappings sinograms reconstructed images in end-to-end manner. third combine with neural-network enhancement. We discuss future perspectives technology.
Язык: Английский
Процитировано
29Computers in Biology and Medicine, Год журнала: 2021, Номер 136, С. 104665 - 104665
Опубликована: Июль 20, 2021
Язык: Английский
Процитировано
71PET Clinics, Год журнала: 2021, Номер 16(4), С. 553 - 576
Опубликована: Сен. 15, 2021
Язык: Английский
Процитировано
70European Journal of Nuclear Medicine and Molecular Imaging, Год журнала: 2022, Номер 49(8), С. 2482 - 2492
Опубликована: Март 21, 2022
Язык: Английский
Процитировано
50Annals of Nuclear Medicine, Год журнала: 2022, Номер 36(2), С. 133 - 143
Опубликована: Янв. 14, 2022
Язык: Английский
Процитировано
47European Journal of Nuclear Medicine and Molecular Imaging, Год журнала: 2023, Номер 51(2), С. 358 - 368
Опубликована: Окт. 3, 2023
Язык: Английский
Процитировано
44Clinical Nuclear Medicine, Год журнала: 2022, Номер 47(7), С. 606 - 617
Опубликована: Апрель 20, 2022
Purpose The generalizability and trustworthiness of deep learning (DL)–based algorithms depend on the size heterogeneity training datasets. However, because patient privacy concerns ethical legal issues, sharing medical images between different centers is restricted. Our objective to build a federated DL-based framework for PET image segmentation utilizing multicentric dataset compare its performance with centralized DL approach. Methods from 405 head neck cancer patients 9 formed basis this study. All tumors were segmented manually. converted SUV maps resampled isotropic voxels (3 × 3 mm ) then normalized. subvolumes (12 12 cm consisting whole background analyzed. Data each center divided into train/validation (80% patients) test sets (20% patients). modified R2U-Net was used as core model. A parallel model developed compared approach where data are pooled one server. Segmentation metrics, including Dice similarity Jaccard coefficients, percent relative errors (RE%) peak , mean median max metabolic tumor volume, total lesion glycolysis computed manual delineations. Results versus methods nearly identical metrics: (0.84 ± 0.06 vs 0.84 0.05) (0.73 0.08 0.73 0.07). For quantitative parameters, we obtained comparable RE% (6.43% 4.72% 6.61% 5.42%), volume (12.2% 16.2% 12.1% 15.89%), (6.93% 9.6% 7.07% 9.85%) negligible . No significant differences in ( P > 2 frameworks (centralized federated) observed. Conclusion achieved respect Federated models could provide robust generalizable segmentation, while addressing issues clinical sharing.
Язык: Английский
Процитировано
41Medical Image Analysis, Год журнала: 2023, Номер 86, С. 102787 - 102787
Опубликована: Фев. 28, 2023
Язык: Английский
Процитировано
24