Advancements in Machine Learning and Deep Learning for Breast Cancer Detection: A Systematic Review DOI Creative Commons

Zeba Khan,

Madhavidevi Botlagunta,

Gorli L. Aruna Kumari

и другие.

Artificial intelligence, Год журнала: 2024, Номер unknown

Опубликована: Дек. 19, 2024

Breast cancer is a significant transnational health concern, requiring effective timely detection methods to improve patient’s treatment result and reduce mortality rates. While conventional screening like mammography, ultrasound, MRI have proven efficacy, they possess limitations, such as false-positive results discomfort. In recent years, machine learning (ML) deep (DL) techniques demonstrated potential in transforming breast through the analysis of imaging data. This review systematically explores advancements research applications for detecting cancer. Through systematic existing literature, we identify trends, challenges, opportunities development deployment ML DL models diagnosis. We highlight crucial role early enhancing patient outcomes lowering Furthermore, impact technologies on clinical procedure, outcomes, healthcare delivery detection. By identifying evaluating studies detection, aim provide valuable insights researchers, clinicians, policymakers, stakeholders interested leveraging advanced computational enhance

Язык: Английский

Secretary bird optimization algorithm based on quantum computing and multiple strategies improvement for KELM diabetes classification DOI Creative Commons
Yu Zhu, Mingxu Zhang, Qing Huang

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 30, 2025

Abstract The classification of chronic diseases has long been a prominent research focus in the field public health, with widespread application machine learning algorithms. Diabetes is one high prevalence worldwide and considered disease its own right. Given nature this condition, numerous researchers are striving to develop robust algorithms for accurate classification. This study introduces revolutionary approach accurately classifying diabetes, aiming provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) proposed combination Kernel Extreme Learning Machine (KELM) diabetes prediction model. First, (SBOA) enhanced by integrating particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, quantum computing-based t-distribution variations. performance QHSBOA validated using CEC2017 benchmark suite. Subsequently, used optimize kernel penalty parameter $$\:C$$ bandwidth $$\:c$$ KELM. Comparative experiments other models conducted datasets. experimental results indicate that QHSBOA-KELM model outperforms comparative four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, specificity. offers an effective method early diagnosis diabetes.

Язык: Английский

Процитировано

3

Wavelet and AI-based reservoir evaporation modeling for optimized water management: a case study of Koudiat Acerdoun Dam DOI

Leila Benchaiba,

Abderzak Moussouni, Amer Zeghmar

и другие.

Theoretical and Applied Climatology, Год журнала: 2025, Номер 156(4)

Опубликована: Март 28, 2025

Язык: Английский

Процитировано

1

Transforming Cancer Classification: The Role of Advanced Gene Selection DOI Creative Commons
Abrar Yaqoob, Mushtaq Ahmad Mir, G. Venkata Rao

и другие.

Diagnostics, Год журнала: 2024, Номер 14(23), С. 2632 - 2632

Опубликована: Ноя. 22, 2024

Accurate classification in cancer research is vital for devising effective treatment strategies. Precise depends significantly on selecting the most informative genes from high-dimensional datasets, a task made complex by extensive data involved. This study introduces Two-stage MI-PSA Gene Selection algorithm, novel approach designed to enhance accuracy through robust gene selection methods.

Язык: Английский

Процитировано

8

Enhanced Leukemia Prediction using Hybrid Ant Colony and Ant Lion Optimization for Gene Selection and Classification DOI Creative Commons

D Santhakumar,

Gnanajeyaraman Rajaram,

R Elankavi

и другие.

MethodsX, Год журнала: 2025, Номер 14, С. 103239 - 103239

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

1

Advanced machine learning framework for enhancing breast cancer diagnostics through transcriptomic profiling DOI Creative Commons

Mohamed J. Saadh,

Hanan Hassan Ahmed,

Radhwan Abdul Kareem

и другие.

Discover Oncology, Год журнала: 2025, Номер 16(1)

Опубликована: Март 17, 2025

This study proposes an advanced machine learning (ML) framework for breast cancer diagnostics by integrating transcriptomic profiling with optimized feature selection and classification techniques. A dataset of 1759 samples (987 patients, 772 healthy controls) was analyzed using Recursive Feature Elimination, Boruta, ElasticNet selection. Dimensionality reduction techniques, including Non-Negative Matrix Factorization (NMF), Autoencoders, transformer-based embeddings (BioBERT, DNABERT), were applied to enhance model interpretability. Classifiers such as XGBoost, LightGBM, ensemble voting, Multi-Layer Perceptron, Stacking trained grid search cross-validation. Model evaluation conducted accuracy, AUC, MCC, Kappa Score, ROC, PR curves, external validation performed on independent 175 samples. XGBoost LightGBM achieved the highest test accuracies (0.91 0.90) AUC values (up 0.92), particularly NMF BioBERT. The Voting method exhibited best accuracy (0.92), confirming its robustness. Transformer-based techniques significantly improved performance compared conventional approaches like PCA Decision Trees. proposed ML enhances diagnostic interpretability, demonstrating strong generalizability dataset. These findings highlight potential precision oncology personalized diagnostics.

Язык: Английский

Процитировано

1

ADVANCED GENETIC ALGORITHM (GA)-INDEPENDENT COMPONENT ANALYSIS (ICA) ENSEMBLE MODEL FOR PREDICTING TRAPPED HUMANS THROUGH HYBRID DIMENSIONALITY REDUCTION DOI Creative Commons

Enoch Adama Jiya,

Ilesanmi B. Oluwafemi

Scientific African, Год журнала: 2025, Номер unknown, С. e02564 - e02564

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

CICADA (UCX): A Novel Approach for Automated Breast Cancer Classification through Aggressiveness Delineation DOI
Davinder Paul Singh, Tathagat Banerjee, Prabhjot Kour

и другие.

Computational Biology and Chemistry, Год журнала: 2025, Номер 115, С. 108368 - 108368

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Hybrid feature selection module for improving performance of software vulnerability severity prediction model on textual dataset DOI
Ruchika Malhotra,

Vidushi

Computing, Год журнала: 2025, Номер 107(2)

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Improving stroke risk prediction by integrating XGBoost, optimized principal component analysis, and explainable artificial intelligence DOI Creative Commons
Lesia Mochurad, V. I. Babii,

Yuliia Boliubash

и другие.

BMC Medical Informatics and Decision Making, Год журнала: 2025, Номер 25(1)

Опубликована: Фев. 7, 2025

The relevance of the study is due to growing number diseases cerebrovascular system, in particular stroke, which one leading causes disability and mortality world. To improve stroke risk prediction models terms efficiency interpretability, we propose integrate modern machine learning algorithms data dimensionality reduction methods, XGBoost optimized principal component analysis (PCA), provide structuring increase processing speed, especially for large datasets. For first time, explainable artificial intelligence (XAI) integrated into PCA process, increases transparency interpretation, providing a better understanding factors medical professionals. proposed approach was tested on two datasets, with accuracy 95% 98%. Cross-validation yielded an average value 0.99, high values Matthew's correlation coefficient (MCC) metrics 0.96 Cohen's Kappa (CK) confirmed generalizability reliability model. speed increased threefold OpenMP parallelization, makes it possible apply practice. Thus, method innovative can potentially forecasting systems healthcare industry.

Язык: Английский

Процитировано

0

Prior knowledge evaluation and emphasis sampling-based evolutionary algorithm for high-dimensional medical data feature selection DOI

Zhilin Wang,

Lizhi Shao, Ali Asghar Heidari

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126737 - 126737

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0