Enhanced Moth-flame Optimizer with Quasi-Reflection and Refraction Learning with Application to Image Segmentation and Medical Diagnosis DOI

Yinghai Ye,

Huiling Chen, Zhifang Pan

и другие.

Current Bioinformatics, Год журнала: 2022, Номер 18(2), С. 109 - 142

Опубликована: Сен. 20, 2022

Background: Moth-flame optimization will meet the premature and stagnation phenomenon when encountering difficult tasks. Objective: To overcome above shortcomings, this paper presented a quasi-reflection moth-flame algorithm with refraction learning called QRMFO to strengthen property of ordinary MFO apply it in various application fields. Method: In proposed QRMFO, quasi-reflection-based increases diversity population expands search space on iteration jump phase; improves accuracy potential optimal solution. Results: Several experiments are conducted evaluate superiority paper; first all, CEC2017 benchmark suite is utilized estimate capability dealing standard test sets compared state-of-the-art algorithms; afterward, adopted deal multilevel thresholding image segmentation problems real medical diagnosis case. Conclusion: Simulation results discussions show that optimizer superior basic other advanced methods terms convergence rate solution accuracy.

Язык: Английский

WHHO: enhanced Harris hawks optimizer for feature selection in high-dimensional data DOI
Meilin Zhang,

Huiling Chen,

Ali Asghar Heidari

и другие.

Cluster Computing, Год журнала: 2025, Номер 28(3)

Опубликована: Янв. 21, 2025

Язык: Английский

Процитировано

2

An Efficient Cancer Classification Model Using Microarray and High-Dimensional Data DOI Creative Commons
Hanaa Fathi, Hussain AlSalman, Abdu Gumaei

и другие.

Computational Intelligence and Neuroscience, Год журнала: 2021, Номер 2021(1)

Опубликована: Янв. 1, 2021

Cancer can be considered as one of the leading causes death widely. One most effective tools to able handle cancer diagnosis, prognosis, and treatment is by using expression profiling technique which based on microarray gene. For each data point (sample), gene usually receives tens thousands genes. As a result, this large‐scale, high‐dimensional, highly redundant. The classification profiles (NP)‐Hard problem. Feature (gene) selection methods A hybrid approach presented in paper, several machine learning techniques were used model: Pearson’s correlation coefficient correlation‐based feature selector reducer, Decision Tree classifier that easy interpret does not require parameter, Grid Search CV (cross‐validation) optimize maximum depth hyperparameter. Seven standard datasets are evaluate our model. To identify features informative relative proposed model, various performance measurements employed, including accuracy, specificity, sensitivity, F 1‐score, AUC. suggested strategy greatly decreases number genes required for classification, selects features, increases according results.

Язык: Английский

Процитировано

46

Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis DOI

Jia-Cong Liu,

Jiahui Wei,

Ali Asghar Heidari

и другие.

Computers in Biology and Medicine, Год журнала: 2022, Номер 144, С. 105356 - 105356

Опубликована: Март 7, 2022

Язык: Английский

Процитировано

37

Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search DOI

Sudan Yu,

Ali Asghar Heidari,

Caitou He

и другие.

Solar Energy, Год журнала: 2022, Номер 242, С. 79 - 104

Опубликована: Июль 16, 2022

Язык: Английский

Процитировано

37

Enhanced Moth-flame Optimizer with Quasi-Reflection and Refraction Learning with Application to Image Segmentation and Medical Diagnosis DOI

Yinghai Ye,

Huiling Chen, Zhifang Pan

и другие.

Current Bioinformatics, Год журнала: 2022, Номер 18(2), С. 109 - 142

Опубликована: Сен. 20, 2022

Background: Moth-flame optimization will meet the premature and stagnation phenomenon when encountering difficult tasks. Objective: To overcome above shortcomings, this paper presented a quasi-reflection moth-flame algorithm with refraction learning called QRMFO to strengthen property of ordinary MFO apply it in various application fields. Method: In proposed QRMFO, quasi-reflection-based increases diversity population expands search space on iteration jump phase; improves accuracy potential optimal solution. Results: Several experiments are conducted evaluate superiority paper; first all, CEC2017 benchmark suite is utilized estimate capability dealing standard test sets compared state-of-the-art algorithms; afterward, adopted deal multilevel thresholding image segmentation problems real medical diagnosis case. Conclusion: Simulation results discussions show that optimizer superior basic other advanced methods terms convergence rate solution accuracy.

Язык: Английский

Процитировано

36