Rangeland Ecology & Management, Год журнала: 2024, Номер 99, С. 1 - 17
Опубликована: Дек. 31, 2024
Язык: Английский
Rangeland Ecology & Management, Год журнала: 2024, Номер 99, С. 1 - 17
Опубликована: Дек. 31, 2024
Язык: Английский
Natural Hazards, Год журнала: 2022, Номер 116(3), С. 2957 - 2991
Опубликована: Дек. 20, 2022
Язык: Английский
Процитировано
90Remote Sensing, Год журнала: 2022, Номер 15(1), С. 192 - 192
Опубликована: Дек. 29, 2022
Floods are one of the most destructive natural disasters, causing financial and human losses every year. As a result, reliable Flood Susceptibility Mapping (FSM) is required for effective flood management reducing its harmful effects. In this study, new machine learning model based on Cascade Forest Model (CFM) was developed FSM. Satellite imagery, historical reports, field data were used to determine flood-inundated areas. The database included 21 flood-conditioning factors obtained from different sources. performance proposed CFM evaluated over two study areas, results compared with those other six methods, including Support Vector Machine (SVM), Decision Tree (DT), Random (RF), Deep Neural Network (DNN), Light Gradient Boosting (LightGBM), Extreme (XGBoost), Categorical (CatBoost). result showed produced highest accuracy models both Overall Accuracy (AC), Kappa Coefficient (KC), Area Under Receiver Operating Characteristic Curve (AUC) more than 95%, 0.8, 0.95, respectively. Most these recognized southwestern part Karun basin, northern northwestern regions Gorganrud basin as susceptible
Язык: Английский
Процитировано
75Urban Climate, Год журнала: 2023, Номер 49, С. 101503 - 101503
Опубликована: Март 18, 2023
Язык: Английский
Процитировано
62Big Data Research, Год журнала: 2023, Номер 35, С. 100416 - 100416
Опубликована: Ноя. 9, 2023
Язык: Английский
Процитировано
56Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(29), С. 74031 - 74044
Опубликована: Май 18, 2023
Язык: Английский
Процитировано
52Geomatics Natural Hazards and Risk, Год журнала: 2022, Номер 13(1), С. 2183 - 2226
Опубликована: Авг. 19, 2022
Floods have received global significance in contemporary times due to their destructive behavior, which may wreak tremendous ruin on infrastructure and civilization. The present research employed an integration of the Geographic information system (GIS) Analytical Hierarchy Process (AHP) method for identifying flood susceptibility zonation (FSZ), vulnerability (FVZ), risk (FRZ) humid subtropical Uttar Dinajpur district India. study combined a large number thematic layers (N = 12 FSZ N 9 FVZ) achieve reliable accuracy included multicollinearity analysis these variables overcome issues related highly correlated variables. According findings, 27.04, 15.62, 4.59% area were classified as medium, high, very high FRZ, respectively. ROC-AUC, MAE, MSE, RMSE model exhibited good prediction 0.73, 0.15, 0.16, 0.21, performance AHP has been evaluated using sensitivity analyses. It also recommends that persistent improvement this subject, such studies modifying criteria thresholds, changing relative criteria, desired matrix, will permit GIS MCDA be progressively adapted real hazard-management issues.
Язык: Английский
Процитировано
67Sustainable Cities and Society, Год журнала: 2023, Номер 97, С. 104744 - 104744
Опубликована: Июнь 25, 2023
Язык: Английский
Процитировано
40Journal of Hydrology, Год журнала: 2023, Номер 624, С. 129961 - 129961
Опубликована: Июль 19, 2023
Язык: Английский
Процитировано
30Applied Soft Computing, Год журнала: 2023, Номер 148, С. 110846 - 110846
Опубликована: Сен. 13, 2023
Язык: Английский
Процитировано
25Water, Год журнала: 2024, Номер 16(1), С. 173 - 173
Опубликована: Янв. 3, 2024
In recent years, there has been a growing interest in flood susceptibility modeling. this study, we conducted bibliometric analysis followed by meta-data to capture the nature and evolution of literature, intellectual structure networks, emerging themes, knowledge gaps Relevant publications were retrieved from Web Science database identify leading authors, influential journals, trending articles. The results indicated that hybrid models most frequently used prediction models. Results show GIS, machine learning, statistical models, analytical hierarchy process central focuses research area. also revealed slope, elevation, distance river are commonly factors present study discussed importance resolution input data, size representation training sample, other lessons learned, future directions field.
Язык: Английский
Процитировано
12