Environmental Monitoring and Assessment, Год журнала: 2024, Номер 196(12)
Опубликована: Ноя. 27, 2024
Язык: Английский
Environmental Monitoring and Assessment, Год журнала: 2024, Номер 196(12)
Опубликована: Ноя. 27, 2024
Язык: Английский
Environment Development and Sustainability, Год журнала: 2024, Номер unknown
Опубликована: Июнь 21, 2024
Язык: Английский
Процитировано
17Environmental Chemistry and Ecotoxicology, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Current Opinion in Environmental Science & Health, Год журнала: 2024, Номер 39, С. 100554 - 100554
Опубликована: Май 5, 2024
Язык: Английский
Процитировано
6Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112268 - 112268
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
6International Journal of Swarm Intelligence Research, Год журнала: 2025, Номер 16(1), С. 1 - 23
Опубликована: Фев. 26, 2025
This paper proposes ENNOEIGS, an evolutionary neural network-based online ecological industrial governance system that integrates advanced architectures with optimization for robust pollution monitoring. The framework combines convolutional networks dimensional reduction of sensor data, external attention mechanisms discovering pattern correlations, and long short-term memory modeling the spatiotemporal evolution contaminants. A genetic algorithm continuously optimizes network parameters, enabling adaptation to changing conditions. Experimental validation using wastewater monitoring data demonstrates ENNOEIGS's superior performance, achieving a 94.8% anomaly detection rate 2.3% false alarms, outperforming existing approaches. reduces mean modified absolute error 0.028 mg/L while maintaining faster convergence during training.
Язык: Английский
Процитировано
0Environmental Earth Sciences, Год журнала: 2025, Номер 84(7)
Опубликована: Март 21, 2025
Язык: Английский
Процитировано
0Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(38), С. 50427 - 50442
Опубликована: Авг. 2, 2024
Язык: Английский
Процитировано
2Natural Hazards, Год журнала: 2024, Номер 120(5), С. 4789 - 4809
Опубликована: Янв. 29, 2024
Язык: Английский
Процитировано
1Journal of Computing in Civil Engineering, Год журнала: 2024, Номер 38(6)
Опубликована: Июль 29, 2024
Язык: Английский
Процитировано
1Journal of Machine and Computing, Год журнала: 2024, Номер unknown, С. 702 - 721
Опубликована: Июль 5, 2024
Human actions and changing weather patterns are contributing to the growing demand for groundwater resources. Nevertheless, evaluating quality of is crucial. Nitrate a significant water contaminant that can lead blue-baby syndrome or methemoglobinemia. Therefore, it necessary assess level nitrate in groundwater. Current methods involve integrating into models. The inappropriate datasets, lack performance, other constraints limitations current methods. Ground dataset used pre-processed data’s. Selected data’s feature extracted associated with rule ranking. In suggested model, use associative mining technique has been implemented address these challenges levels method ranking carried out using association divide datasets. split gini indexing algorithm introduced proposed model data classification. Split Gini Indexing decision tree induction build trees classification tasks. It based on impurity measure, which measures heterogeneity dataset. classified Naïve Bayes, SVM, KNN algorithms. approach's efficiency evaluated by calculating performance metrics such as precision, accuracy, F1-score, recall values. research attains an improved accuracy 0.99, demonstrating enhanced performance.
Язык: Английский
Процитировано
0