Comparative study of sampling strategies for machine learning-based landslide susceptibility assessment DOI
Xiaodong Liu, Ting Xiao,

Shaohe Zhang

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(12), С. 4935 - 4957

Опубликована: Ноя. 13, 2024

Язык: Английский

Assessment of sodium adsorption ratio (SAR) in groundwater: Integrating experimental data with cutting-edge swarm intelligence approaches DOI

Zongwang Wu,

Hossein Moayedi, Marjan Salari

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown

Опубликована: Апрель 29, 2024

Язык: Английский

Процитировано

5

Evaluation of student failure in higher education by an innovative strategy of fuzzy system combined optimization algorithms and AI DOI Creative Commons

Junting Nie,

Hossein Ahmadi Dehrashid

Heliyon, Год журнала: 2024, Номер 10(7), С. e29182 - e29182

Опубликована: Апрель 1, 2024

This research suggests two novel metaheuristic algorithms to enhance student performance: Harris Hawk's Optimizer (HHO) and the Earthworm Optimization Algorithm (EWA). In this sense, a series of adaptive neuro-fuzzy inference system (ANFIS) proposed models were trained using these methods. The selection best-fit model depends on finding an excellent connection between inputs output(s) layers in training testing datasets (e.g., combination expert knowledge, experimentation, validation techniques). study's primary result is division participants into performance-based groups (failed non-failed). experimental data used build measured fourteen process variables: relocation, gender, age at enrollment, debtor, nationality, educational special needs, current tuition fees, scholarship holder, unemployment, inflation, GDP, application order, day/evening attendance, admission grade. During evaluation, scoring was created addition mean absolute error (MAE), square (MSE), area under curve (AUC) assess efficacy utilized approaches. Further revealed that HHO-ANFIS superior EWA-ANFIS. With AUC = 0.8004 0.7886, MSE 0.62689 0.65598, MAE 0.64105 0.65746, failure pupils assessed with most significant degree accuracy. MSE, MAE, precision indicators showed EWA-ANFIS less accurate, having amounts 0.71543 0.71776, 0.70819 0.71518, 0.7565 0.758. It found optimization have high ability increase accuracy performance conventional ANFIS predicting students' performance, which can cause changes management improve quality academic programs.

Язык: Английский

Процитировано

4

Species distribution modeling of Malva neglecta Wallr. weed using ten different machine learning algorithms: An approach to site-specific weed management (SSWM) DOI

Emran Dastres,

Hassan Esmaeili, Mohsen Edalat

и другие.

European Journal of Agronomy, Год журнала: 2025, Номер 167, С. 127579 - 127579

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

0

Multi-hazard susceptibility mapping in the Salt Lake watershed DOI Creative Commons

Sima Pourhashemi,

Mohammad Ali Zangane Asadi,

Mahdi Boroughani

и другие.

Environmental Challenges, Год журнала: 2024, Номер unknown, С. 101079 - 101079

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

3

Four Optimization Meta-heuristic Approaches in Evaluating Groundwater Quality (Case study: Shiraz Plain) DOI
Hossein Moayedi, Marjan Salari,

The-Chuyen Nguyen

и другие.

Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2024, Номер unknown

Опубликована: Июнь 20, 2024

Язык: Английский

Процитировано

2

Modeling the total hardness (TH) of groundwater in aquifers using novel hybrid soft computing optimizer models DOI
Hossein Moayedi, Marjan Salari,

Sana Abdul-Jabbar Ali

и другие.

Environmental Earth Sciences, Год журнала: 2024, Номер 83(13)

Опубликована: Июнь 12, 2024

Язык: Английский

Процитировано

1

Comparative study of sampling strategies for machine learning-based landslide susceptibility assessment DOI
Xiaodong Liu, Ting Xiao,

Shaohe Zhang

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(12), С. 4935 - 4957

Опубликована: Ноя. 13, 2024

Язык: Английский

Процитировано

0