Stability Prediction Model of Transmission Tower Slope Based on ISCSO-SVM DOI Open Access
Zilong Zhang, Xiaoliang Liu, Yanhai Wang

и другие.

Electronics, Год журнала: 2024, Номер 14(1), С. 126 - 126

Опубликована: Дек. 31, 2024

Landslides induced by heavy rainfall are common in southern China and pose significant risks to the safe operation of transmission lines. To ensure reliability line operations, this paper presents a stability prediction model for tower slopes based on Improved Sand Cat Swarm Optimization (ISCSO) algorithm Support Vector Machine (SVM). The ISCSO is enhanced with dynamic reverse learning triangular wandering strategies, which then used optimize kernel penalty parameters SVM, resulting ISCSO-SVM model. In study, typical slope as case database generated through orthogonal experimental design Geo-studio simulations. addition traditional input features, an additional input—transmission catchment area—is incorporated, stable state set predicted output. results demonstrate that achieves highest accuracy, smallest errors across all metrics. Specifically, compared standard MAPE, MAE, RMSE values reduced 70.96%, 71.41%, 57.37%, respectively. effectively predicts slopes, thereby ensuring

Язык: Английский

Landslide susceptibility assessment based on remote sensing interpretation and DBN-MLP model: a case study of Yiyuan County, China DOI Creative Commons
Shufeng Li, Chao Yin, Jiaxu Li

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown

Опубликована: Янв. 19, 2025

Язык: Английский

Процитировано

0

Rock Slope Stability Prediction: A Review of Machine Learning Techniques DOI

Arifuggaman Arif,

Chunlei Zhang,

Mahabub Hasan Sajib

и другие.

Geotechnical and Geological Engineering, Год журнала: 2025, Номер 43(3)

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

A digital twin-driven enhanced visualization method for high-steep slope scene DOI Creative Commons
Jun Zhu, Ren Ying, Yukun Guo

и другие.

International Journal of Digital Earth, Год журнала: 2025, Номер 18(1)

Опубликована: Май 28, 2025

Язык: Английский

Процитировано

0

High-accuracy slope stability analysis using data-driven and attention-based deep learning model DOI
Yangli Zhou, Haiying Fu, Mingzhe Zhou

и другие.

Earth Science Informatics, Год журнала: 2024, Номер 18(1)

Опубликована: Дек. 11, 2024

Язык: Английский

Процитировано

1

Stability Prediction Model of Transmission Tower Slope Based on ISCSO-SVM DOI Open Access
Zilong Zhang, Xiaoliang Liu, Yanhai Wang

и другие.

Electronics, Год журнала: 2024, Номер 14(1), С. 126 - 126

Опубликована: Дек. 31, 2024

Landslides induced by heavy rainfall are common in southern China and pose significant risks to the safe operation of transmission lines. To ensure reliability line operations, this paper presents a stability prediction model for tower slopes based on Improved Sand Cat Swarm Optimization (ISCSO) algorithm Support Vector Machine (SVM). The ISCSO is enhanced with dynamic reverse learning triangular wandering strategies, which then used optimize kernel penalty parameters SVM, resulting ISCSO-SVM model. In study, typical slope as case database generated through orthogonal experimental design Geo-studio simulations. addition traditional input features, an additional input—transmission catchment area—is incorporated, stable state set predicted output. results demonstrate that achieves highest accuracy, smallest errors across all metrics. Specifically, compared standard MAPE, MAE, RMSE values reduced 70.96%, 71.41%, 57.37%, respectively. effectively predicts slopes, thereby ensuring

Язык: Английский

Процитировано

0