Genetic Algorithm-Optimized Extreme Learning Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China DOI Creative Commons

Quanshan Liu,

Zongjun Wu,

Ningbo Cui

и другие.

Atmosphere, Год журнала: 2022, Номер 13(6), С. 971 - 971

Опубликована: Июнь 15, 2022

Reference evapotranspiration (ET0) is an essential component in hydrological and ecological processes. The Penman–Monteith (PM) model of Food Agriculture Organization the United Nations (FAO) requires a number meteorological parameters; it urgent to develop high-precision computationally efficient ET0 models with fewer parameter inputs. This study proposed genetic algorithm (GA) optimize extreme learning machine (ELM), evaluated performances ELM, GA-ELM, empirical for estimating daily Southwest China. Daily data including maximum temperature (Tmax), minimum (Tmin), wind speed (u2), relative humidity (RH), net radiation (Rn), global solar (Rs) during 1992–2016 from stations were used training testing. results FAO-56 formula as control group. showed that GA-ELM (with R2 ranging 0.71–0.99, RMSE 0.036–0.77 mm·d−1) outperformed standalone ELM 0.716–0.99, 0.08–0.77 testing, both which superior 0.36–0.91, 0.69–2.64 mm·d−1). prediction accuracy varies different input combination models. using Tmax, Tmin, u2, RH, Rn/Rs (GA-ELM5/GA-ELM4 ELM5/ELM4) obtained best estimates, 0.98–0.99, 0.03–0.21 mm·d−1, followed by (GA-ELM3/GA-ELM2 ELM3/ELM2) involved Rn those Rs when quantity parameters was same. Overall, GA-ELM5 (Tmax, RH inputs) other thus recommended estimation. With estimation accuracy, computational costs, availability accounted, GA-ELM2 determined be most effective limited

Язык: Английский

A review of deep learning techniques used in agriculture DOI
Ishana Attri, Lalit Kumar Awasthi,

Teek Parval Sharma

и другие.

Ecological Informatics, Год журнала: 2023, Номер 77, С. 102217 - 102217

Опубликована: Июль 18, 2023

Язык: Английский

Процитировано

144

Modeling Potential Evapotranspiration by Improved Machine Learning Methods Using Limited Climatic Data DOI Open Access
Reham R. Mostafa, Özgür Kişi,

Rana Muhammad Adnan

и другие.

Water, Год журнала: 2023, Номер 15(3), С. 486 - 486

Опубликована: Янв. 25, 2023

Modeling potential evapotranspiration (ET0) is an important issue for water resources planning and management projects involving droughts flood hazards. Evapotranspiration, one of the main components hydrological cycle, highly effective in drought monitoring. This study investigates efficiency two machine-learning methods, random vector functional link (RVFL) relevance machine (RVM), improved with new metaheuristic algorithms, quantum-based avian navigation optimizer algorithm (QANA), artificial hummingbird (AHA) modeling ET0 using limited climatic data, minimum temperature, maximum extraterrestrial radiation. The outcomes hybrid RVFL-AHA, RVFL-QANA, RVM-AHA, RVM-QANA models compared single RVFL RVM models. Various input combinations three data split scenarios were employed. results revealed that AHA QANA considerably methods ET0. Considering periodicity component radiation as inputs prediction accuracy applied methods.

Язык: Английский

Процитировано

73

Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection DOI
Anurag Malik, Mehdi Jamei, Mumtaz Ali

и другие.

Agricultural Water Management, Год журнала: 2022, Номер 272, С. 107812 - 107812

Опубликована: Июль 30, 2022

Язык: Английский

Процитировано

53

A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives DOI
Pooja Goyal, Sunil Kumar, Rakesh Sharda

и другие.

Computers and Electronics in Agriculture, Год журнала: 2023, Номер 209, С. 107836 - 107836

Опубликована: Апрель 28, 2023

Язык: Английский

Процитировано

43

Forecasting actual evapotranspiration without climate data based on stacked integration of DNN and meta-heuristic models across China from 1958 to 2021 DOI
Ahmed Elbeltagi, Aman Srivastava, Penghan Li

и другие.

Journal of Environmental Management, Год журнала: 2023, Номер 345, С. 118697 - 118697

Опубликована: Сен. 7, 2023

Язык: Английский

Процитировано

25

Advanced evapotranspiration forecasting in Central Italy: Stacked MLP-RF algorithm and correlated Nystrom views with feature selection strategies DOI
Francesco Granata, Fabio Di Nunno, Giovanni de Marinis

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 220, С. 108887 - 108887

Опубликована: Март 28, 2024

Язык: Английский

Процитировано

15

A state-of-the-art review of long short-term memory models with applications in hydrology and water resources DOI
Zhong-kai Feng, J. Zhang, Wen-jing Niu

и другие.

Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112352 - 112352

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

12

Deep Learning Approaches for Water Stress Forecasting in Arboriculture Using Time Series of Remote Sensing Images: Comparative Study between ConvLSTM and CNN-LSTM Models DOI Creative Commons
Ismail Bounoua,

Youssef Saidi,

Reda Yaagoubi

и другие.

Technologies, Год журнала: 2024, Номер 12(6), С. 77 - 77

Опубликована: Июнь 1, 2024

Irrigation is crucial for crop cultivation and productivity. However, traditional methods often waste water energy due to neglecting soil variations, leading inefficient distribution potential stress. The stress index (CWSI) has become a widely accepted assessing plant status. it necessary forecast the estimate quantity of irrigate. Deep learning (DL) models forecasting have gained prominence in irrigation management address these needs. In this paper, we present comparative study between two deep models, ConvLSTM CNN-LSTM, using remote sensing data. While DL architectures been previously proposed studied various applications, our novelty lies studying their effectiveness field time series images. methodology involves meticulous preparation data, where calculate Landsat 8 satellite imagery through Google Earth Engine. Subsequently, implemented fine-tuned hyperparameters CNN-LSTM models. same processes model compilation, optimization hyperparameters, training were applied architectures. A citrus farm Morocco was chosen as case study. analysis results reveals that excels over long sequences (nine images) with an RMSE 0.119 0.123, respectively, while provides better short (three than 0.153 0.187, respectively.

Язык: Английский

Процитировано

10

Evaluating empirical and machine learning approaches for reference evapotranspiration estimation using limited climatic variables in Nepal DOI Creative Commons

Erica Shrestha,

Suyog Poudyal,

Anup Ghimire

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104254 - 104254

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Exploring interpretable and non-interpretable machine learning models for estimating winter wheat evapotranspiration using particle swarm optimization with limited climatic data DOI
Xin Zhao, Lei Zhang,

Ge Zhu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2023, Номер 212, С. 108140 - 108140

Опубликована: Авг. 15, 2023

Язык: Английский

Процитировано

21