
Scientific African, Год журнала: 2025, Номер unknown, С. e02712 - e02712
Опубликована: Май 1, 2025
Язык: Английский
Scientific African, Год журнала: 2025, Номер unknown, С. e02712 - e02712
Опубликована: Май 1, 2025
Язык: Английский
Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121597 - 121597
Опубликована: Сен. 16, 2023
Язык: Английский
Процитировано
68Cluster Computing, Год журнала: 2025, Номер 28(3)
Опубликована: Янв. 28, 2025
Язык: Английский
Процитировано
5Applied Soft Computing, Год журнала: 2023, Номер 145, С. 110561 - 110561
Опубликована: Июнь 21, 2023
Язык: Английский
Процитировано
38Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 26, 2025
Addressing the shortcomings of Sparrow Search Algorithm (SSA), such as low accuracy convergence and tendency falling into local optimum, a Multi-strategy Integrated (MISSA) is proposed. In this method, by improving black-winged kite algorithm applying it to producer's position update formula, an improved search strategy (ISS) firstly proposed enhance ability. Secondly, new inspired Coot algorithm, called group follow (GFS), improve ability jump out optimum. Finally, random opposition-based learning (ROBLS) applied population after each iteration its diversity. To verify MISSA's effectiveness, extensive testing conducted on 24 benchmark functions well CEC 2017 functions. The experimental results, complemented Wilcoxon rank-sum tests, conclusively demonstrate that MISSA outperforms SSA other advanced optimization algorithms, exhibiting superior overall performance.
Язык: Английский
Процитировано
2Artificial Intelligence Review, Год журнала: 2025, Номер 58(6)
Опубликована: Март 21, 2025
Язык: Английский
Процитировано
2Symmetry, Год журнала: 2024, Номер 16(6), С. 661 - 661
Опубликована: Май 27, 2024
Particle swarm optimization (PSO) as a intelligence-based algorithm has been widely applied to solve various real-world problems. However, traditional PSO algorithms encounter issues such premature convergence and an imbalance between global exploration local exploitation capabilities when dealing with complex tasks. To address these shortcomings, enhanced incorporating velocity pausing adaptive strategies is proposed. By leveraging the search characteristics of terminal replacement mechanism, problem inherent in standard mitigated. The further refines controls space particle through time-varying inertia coefficients, symmetric cooperative swarms concepts, strategies, balancing exploitation. performance VASPSO was validated on 29 functions from Cec2017, comparing it against five variants seven intelligence algorithms. Experimental results demonstrate that exhibits considerable competitiveness compared 12 relevant code can be found our project homepage.
Язык: Английский
Процитировано
7Journal of Energy Storage, Год журнала: 2023, Номер 73, С. 108986 - 108986
Опубликована: Сен. 18, 2023
Язык: Английский
Процитировано
15Knowledge-Based Systems, Год журнала: 2023, Номер 285, С. 111351 - 111351
Опубликована: Дек. 28, 2023
Язык: Английский
Процитировано
14Journal of Computational Design and Engineering, Год журнала: 2024, Номер 11(3), С. 12 - 42
Опубликована: Апрель 10, 2024
Abstract In recent years, scholars have developed and enhanced optimization algorithms to tackle high-dimensional engineering challenges. The primary challenge of lies in striking a balance between exploring wide search space focusing on specific regions. Meanwhile, design problems are intricate come with various constraints. This research introduces novel approach called Hippo Swarm Optimization (HSO), inspired by the behavior hippos, designed address real-world HSO encompasses four distinct strategies based hippos different scenarios: starvation search, alpha margination, competition. To assess effectiveness HSO, we conducted experiments using CEC2017 test set, featuring highest dimensional problems, CEC2022 constrained problems. parallel, employed 14 established as control group. experimental outcomes reveal that outperforms well-known algorithms, achieving first average ranking out them CEC2022. Across classical consistently delivers best results. These results substantiate highly effective algorithm for both
Язык: Английский
Процитировано
6Applied Soft Computing, Год журнала: 2023, Номер 146, С. 110699 - 110699
Опубликована: Авг. 2, 2023
Язык: Английский
Процитировано
12