Master–Slave Architecture Enhanced and Improved GBO Tuned Cascaded PIPDN Controller for Speed Regulation of DC Motors DOI
Davut İzci, Serdar Ekinci, Rizk M. Rizk‐Allah

и другие.

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Май 19, 2025

ABSTRACT This study introduces a novel master–slave architecture featuring an improved gradient‐based optimizer (ImGBO) to effectively tune cascaded proportional‐integral (PI) and proportional‐derivative with filter (PDN) controller specifically for DC motor speed regulation. The core novelty of this work lies in enhancing the traditional GBO algorithm by integrating experience‐based perturbed learning mechanism adaptive local search strategy, significantly its ability balance exploration exploitation during optimization. proposed ImGBO‐based PI‐PDN is comprehensively evaluated against GBO, recent metaheuristics advanced proportional‐integral‐derivative (PID) fractional‐order PID (FOPID) controllers. Significant improvements were observed, method demonstrating exceptionally short rise (0.0089 s) settling times (0.0140 s), no overshoot, minimal steady‐state error (0.0017%). Stability analysis via pole placement Bode plots affirmed robust stable operation controller, exhibiting phase margin 71.6640° infinite gain margin. These results strongly support suitability effectiveness approach precision‐critical control applications.

Язык: Английский

Comparative analysis of the hybrid gazelle‐Nelder–Mead algorithm for parameter extraction and optimization of solar photovoltaic systems DOI Creative Commons
Serdar Ekinci, Davut İzci, Abdelazim G. Hussien

и другие.

IET Renewable Power Generation, Год журнала: 2024, Номер 18(6), С. 959 - 978

Опубликована: Фев. 20, 2024

Abstract The pressing need for sustainable energy solutions has driven significant research in optimizing solar photovoltaic (PV) systems which is crucial maximizing conversion efficiency. Here, a novel hybrid gazelle‐Nelder–Mead (GOANM) algorithm proposed and evaluated. GOANM synergistically integrates the gazelle optimization (GOA) with Nelder–Mead (NM) algorithm, offering an efficient powerful approach parameter extraction PV models. This investigation involves thorough assessment of algorithm's performance across diverse benchmark functions, including unimodal, multimodal, fixed‐dimensional CEC2020 functions. Notably, consistently outperforms other approaches, demonstrating enhanced convergence speed, accuracy, reliability. Furthermore, application extended to single diode double models RTC France cell model Photowatt‐PWP201 module. experimental results demonstrate that approaches terms accurate estimation, low root mean square values, fast convergence, alignment data. These emphasize its role achieving superior efficiency renewable systems.

Язык: Английский

Процитировано

24

Enhancing IIR system identification: Harnessing the synergy of gazelle optimization and simulated annealing algorithms DOI Creative Commons
Serdar Ekinci, Davut İzci

e-Prime - Advances in Electrical Engineering Electronics and Energy, Год журнала: 2023, Номер 5, С. 100225 - 100225

Опубликована: Июль 29, 2023

In the field of digital filter design and system identification, accurately modeling Infinite Impulse Response (IIR) systems is utmost importance. This paper introduces a new adaptive algorithm that combines gazelle optimization with simulated annealing to achieve superior performance for IIR filters used in identification. To evaluate algorithm's effectiveness, extensive experiments were conducted on two fronts: challenging CEC2020 benchmark functions fifth order identification problem. The proposed proves its effectiveness by achieving optimal solutions when compared other well-known algorithms such as arithmetic optimization, particle swarm differential evolution, sine cosine algorithm, grey wolf optimizer, biogeography-based salp original algorithm. measured ability find best these functions. For problem, study considers both same reduced cases. be identified represented plant. statistical analysis convergence behavior are artificial hummingbird mountain widely bee colony These comparisons demonstrate capability efficiency identifying parameters systems.

Язык: Английский

Процитировано

25

Particle swarm optimization algorithm: review and applications DOI
Laith Abualigah,

Ahlam Sheikhan,

Abiodun M. Ikotun

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 1 - 14

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

18

Whale optimization algorithm: analysis and full survey DOI
Laith Abualigah,

Roa’a Abualigah,

Abiodun M. Ikotun

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 105 - 115

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

12

Spider monkey optimizations: application review and results DOI
Laith Abualigah,

Sahar M. Alshatti,

Abiodun M. Ikotun

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 117 - 131

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

10

Efficient Speed Control for DC Motors Using Novel Gazelle Simplex Optimizer DOI Creative Commons
Serdar Ekinci, Davut İzci, Musa Yılmaz

и другие.

IEEE Access, Год журнала: 2023, Номер 11, С. 105830 - 105842

Опубликована: Янв. 1, 2023

This paper addresses the design of an optimally executed proportional-integral-derivative (PID) controller, tailored for speed regulation a direct current (DC) motor. To achieve this objective, we present novel hybrid algorithm, combining gazelle optimization algorithm (GOA) with effective simplex search method known as Nelder-Mead (NM) technique. The fusion these algorithms yields innovative hybridized version, striking balance between exploration and exploitation. proposed approach, named optimizer (GSO), showcases great promise when applied to task controlling DC motor using PID controller. identify optimal values gains, harness power objective function well, which guides GSO in determining most favorable controller settings. Rigorous comparative simulations are then undertaken, where pit against several other algorithms, namely reptile prairie dog weighted mean vectors optimization, original GOA algorithm. These allow us assess system's behavior through various lenses, such statistical tests, time frequency domain responses, robustness analysis, changes function. evaluations from comprehensive tests demonstrate superiority GSO-based controlled system. exhibits better performance than alternative providing solid evidence its effectiveness. Furthermore, approach outperforms reported tuning methods, affirming prowess achieving superior motors.

Язык: Английский

Процитировано

22

Quantum approximate optimization algorithm: a review study and problems DOI
Laith Abualigah,

Saif AlNajdawi,

Abiodun M. Ikotun

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 147 - 165

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

9

A review of mothflame optimization algorithm: analysis and applications DOI
Laith Abualigah,

Laheeb Al-Abadi,

Abiodun M. Ikotun

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 205 - 219

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

9

Salp swarm algorithm: survey, analysis, and new applications DOI
Laith Abualigah,

Worod Hawamdeh,

Raed Abu Zitar

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 241 - 258

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

7

A review of Henry gas solubility optimization algorithm: a robust optimizer and applications DOI
Laith Abualigah,

Ghada Al-Hilo,

Ali Raza

и другие.

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 177 - 192

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

7