Communications in computer and information science, Год журнала: 2024, Номер unknown, С. 363 - 374
Опубликована: Дек. 21, 2024
Язык: Английский
Communications in computer and information science, Год журнала: 2024, Номер unknown, С. 363 - 374
Опубликована: Дек. 21, 2024
Язык: Английский
Displays, Год журнала: 2025, Номер unknown, С. 103031 - 103031
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер 26, С. 105225 - 105225
Опубликована: Май 5, 2025
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 130434 - 130434
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0International Journal of 3D Printing Technologies and Digital Industry, Год журнала: 2024, Номер 8(2), С. 266 - 276
Опубликована: Авг. 29, 2024
The common denominator of deep learning models used in many different fields today is the pooling functions their internal architecture. These not only directly affect performance study, but also training time. For this reason, it extremely important to measure and share success values. In performances commonly soft pooling, max spatial pyramid average were measured on a dataset as benchmarking literature. purpose, new CNN based architecture was developed. Accuracy, F1 score, precision, recall categorical cross entropy metrics studies literature developed As result obtained, 97.79, 92.50, 91.60 89.09 values from best worst for accuracy obtained functions, respectively. light these results, study have provided better conceptual comparative understanding impact CNN-based model.
Язык: Английский
Процитировано
1Journal of Imaging, Год журнала: 2024, Номер 10(12), С. 311 - 311
Опубликована: Дек. 6, 2024
Microscopic image segmentation (MIS) is a fundamental task in medical imaging and biological research, essential for precise analysis of cellular structures tissues. Despite its importance, the process encounters significant challenges, including variability conditions, complex structures, artefacts (e.g., noise), which can compromise accuracy traditional methods. The emergence deep learning (DL) has catalyzed substantial advancements addressing these issues. This systematic literature review (SLR) provides comprehensive overview state-of-the-art DL methods developed over past six years microscopic images. We critically analyze key contributions, emphasizing how specifically tackle challenges cell, nucleus, tissue segmentation. Additionally, we evaluate datasets performance metrics employed studies. By synthesizing current identifying gaps existing approaches, this not only highlights transformative potential enhancing diagnostic research efficiency but also suggests directions future research. findings study have implications improving methodologies applications, ultimately fostering better patient outcomes advancing scientific understanding.
Язык: Английский
Процитировано
1IEEE Access, Год журнала: 2024, Номер 12, С. 159902 - 159912
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Neural Computing and Applications, Год журнала: 2024, Номер 37(5), С. 3265 - 3286
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Дек. 28, 2024
Язык: Английский
Процитировано
0Communications in computer and information science, Год журнала: 2024, Номер unknown, С. 363 - 374
Опубликована: Дек. 21, 2024
Язык: Английский
Процитировано
0