Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(7)
Опубликована: Июль 1, 2024
Язык: Английский
Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(7)
Опубликована: Июль 1, 2024
Язык: Английский
Structural Concrete, Год журнала: 2025, Номер unknown
Опубликована: Март 4, 2025
Abstract Fiber reinforced polymer (FRP) has emerged as a significant advancement in construction, with design provisions outlined by codes such GB/T 30022‐2013, CSA S806‐12 (R2017), and ACI 440:2015. While the use of FRP bars alternatives to conventional reinforcement columns been extensively studied, their application hollow concrete (HCCs) remains underexplored. This study investigates behavior FRP‐reinforced HCCs using advanced machine learning (ML) models, focusing on prediction two critical outputs: first peak load (Y1) failure (Y2), based eight input parameters. Models evaluated include extreme gradient boosting (XGB), light (LGB), categorical (CGB). A rigorous comparative analysis demonstrated that all models achieved high predictive accuracy, deviations within ±10% actual results, validating reliability. Among CGB exhibited superior generalization robustness, emerging most reliable predictor for HCC behavior. To enhance practicality, user‐friendly graphical user interface was developed allow engineers parameters instantly obtain predictions Y1 Y2. not only advances understanding but also bridges gap between computational real‐world applications, contributing robust tool structural engineering design.
Язык: Английский
Процитировано
5Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 145, С. 110217 - 110217
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
2Nondestructive Testing And Evaluation, Год журнала: 2025, Номер unknown, С. 1 - 33
Опубликована: Март 25, 2025
Self-compacting concrete (SCC) has become increasingly popular due to its superior workability, segregation resistance, and compressive strength. As the traditional methods for strength prediction are costly time-intensive, this study explores machine learning (ML) techniques as efficient alternatives SCC prediction. Three state-of-the-art hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) models, optimised using Firefly Algorithm (FA), Particle Swarm Optimization (PSO) Genetic (GA). For purpose, a robust dataset of 366 instances 7 input parameters is taken from literature. After data analysis pre-processing, hyperparameters models tuned best-fit model tested on unforeseen data. ANFIS-FF stands out best-performing (RTR2 = 0.945 RTS2 0.9395) in both training testing phases, closely followed by ANFIS-GA. All outperform ANFIS model, outlining significance hybridisation, however, ANFIS-PSO lags behind other two models. The highlights importance integrating with metaheuristic algorithms tackling complex engineering problems like design optimal mix design, minimising material waste ensuring cost-effectiveness. It serves benchmark future research comparing hybridisation starting point ANFIS.
Язык: Английский
Процитировано
1Journal of Structural Integrity and Maintenance, Год журнала: 2025, Номер 10(1)
Опубликована: Янв. 2, 2025
Язык: Английский
Процитировано
1Proceedings of the Institution of Civil Engineers - Ground Improvement, Год журнала: 2025, Номер unknown, С. 1 - 11
Опубликована: Апрель 16, 2025
The transition to sustainable construction materials has driven interest in alternatives Portland cement. Soil stabilisation with alkali-activated binders is a promising approach, yet its widespread application requires reliable predictive tools for assessing unconfined compressive strength (UCS). This study explores the use of machine learning algorithms predict UCS soil stabilised one-part binder. An experimental data set was compiled train and validate multiple models, including random forests, artificial neural networks, support vector machines. Despite set’s limited size, models demonstrated strong accuracy, forest achieving an R 2 exceeding 0.80. Sensitivity analysis revealed that water content were most influential parameters, aligning established geotechnical principles. These findings highlight potential as tool optimising techniques. By enhancing capabilities, this approach supports more efficient material selection, reducing reliance on extensive laboratory testing. underscores value integrating data-driven methods into engineering advance high-performance treatment solutions.
Язык: Английский
Процитировано
1Advanced Engineering Informatics, Год журнала: 2025, Номер 66, С. 103470 - 103470
Опубликована: Май 17, 2025
Язык: Английский
Процитировано
1Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(1)
Опубликована: Ноя. 18, 2024
Язык: Английский
Процитировано
4Advances in Engineering Software, Год журнала: 2024, Номер 201, С. 103861 - 103861
Опубликована: Дек. 30, 2024
Язык: Английский
Процитировано
4Transportation Infrastructure Geotechnology, Год журнала: 2025, Номер 12(2)
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04458 - e04458
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0