Gradation regression prediction for engineering based on multiscale rockfill instance segmentation DOI

Haoyue Fan,

Zhenghong Tian, Xiao Sun

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 64, С. 103090 - 103090

Опубликована: Дек. 27, 2024

Язык: Английский

Machine Learning Based Reservoir Characterization and Numerical Modeling from Integrated Well Log and Core Data DOI
Abdul-Muaizz Koray, Dung Bui, Emmanuel Appiah Kubi

и другие.

Geoenergy Science and Engineering, Год журнала: 2024, Номер 243, С. 213296 - 213296

Опубликована: Сен. 7, 2024

Язык: Английский

Процитировано

6

Explainable machine-learning-based prediction of equivalent circulating density using surface-based drilling data DOI Creative Commons
Gerald Kelechi Ekechukwu,

Abayomi Adejumo

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Авг. 1, 2024

When drilling wells for energy explorations, it is important to regulate the formation pressures appropriately prevent kicks, which can lead unimaginable loss of lives and properties. This usually done by controlling equivalent circulating density (ECD), responds dynamic conditions that occur during drilling. The conventional approach determine ECD via mathematical modeling or downhole measurements. However, measurement tools be very expensive, models do not provide a high degree accuracy. Some previous authors have proposed using machine learning (ML) techniques improve accuracy predictions. In this work, we employed an extreme gradient-boosting (XGBoost) methodology predict values. model's was determined correlation coefficients (R2) root mean square errors (RMSE) as their performance metrics. results showed strong prediction capability with R2 RMSE 1.00 0.0005 training data 0.989 0.023 testing/blind set, respectively. developed model outperformed those obtained other popular techniques. Lastly, interpretation mud weight, weight on hook, standpipe pressure contributed most

Язык: Английский

Процитировано

3

Advanced Source Rock Characterization Integrating Pyrolysis, Petrophysical Logs, and Machine Learning in the Unconventional Cane Creek Reservoir, Utah DOI
Carlos Vega-Ortíz,

David List,

Gregor Maxwell

и другие.

Geoenergy Science and Engineering, Год журнала: 2025, Номер unknown, С. 213835 - 213835

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Extracting useful information from sparsely logged wellbores for improved rock typing of heterogeneous reservoir characterization using well-log attributes, feature influence and optimization DOI Creative Commons
David A. Wood

Petroleum Science, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Deep learning-based adaptive denoising method for prediction of crack opening displacement of rock from noisy strain data DOI
Shuai Zhao, Dao-Yuan Tan, Haiyan Wang

и другие.

International Journal of Rock Mechanics and Mining Sciences, Год журнала: 2025, Номер 190, С. 106112 - 106112

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

0

Entropy-Based Measure of Rock Sample Heterogeneity Derived from Micro-CT Images DOI

L. C. Silva,

Júlio de Castro Vargas Fernandes,

Felipe Bevilaqua Foldes Guimarães

и другие.

Transport in Porous Media, Год журнала: 2025, Номер 152(7)

Опубликована: Июнь 3, 2025

Язык: Английский

Процитировано

0

Gradation regression prediction for engineering based on multiscale rockfill instance segmentation DOI

Haoyue Fan,

Zhenghong Tian, Xiao Sun

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 64, С. 103090 - 103090

Опубликована: Дек. 27, 2024

Язык: Английский

Процитировано

1