Advances in Space Research, Год журнала: 2024, Номер 74(8), С. 3765 - 3785
Опубликована: Июль 6, 2024
Язык: Английский
Advances in Space Research, Год журнала: 2024, Номер 74(8), С. 3765 - 3785
Опубликована: Июль 6, 2024
Язык: Английский
Journal of Central South University, Год журнала: 2024, Номер unknown
Опубликована: Авг. 5, 2024
Язык: Английский
Процитировано
8Geo-spatial Information Science, Год журнала: 2025, Номер unknown, С. 1 - 21
Опубликована: Янв. 17, 2025
To address the errors of negative samples in landslide susceptibility modeling and traditional methods exploring regularities hidden evaluation factors, this paper proposes a stacking one- three-dimensional Convolutional Neural Network (Stacking-1D-3D-CNN) assessment method considering sample optimization selection. First, order to select rationally, adopts Relative Frequency Ratio combined with Certainty Factor Method (RFR-CFM) determine samples; secondly, Stacking-1D-3D-CNN proposed is RFR-CFM for first time assessment. In work, determined by Information Quality Model (IQM) were historical disaster points form total sample, modeled at different ratios. Finally, it compared several other models terms hazard zoning results, prone zone statistics, model performance. The findings show that degree spatial aggregation training testing has much greater impact on accuracy than their proportions. Furthermore, models, RFR-CFM-Stacking-1D-3D-CNN highest AUC value, precision, recall, F-score, accuracy, which are 0.95, 0.83, 0.89, 0.85, 84.76%, respectively, lowest RMSE MAE, 0.39 0.15, respectively. This proves selection method's rationality model's effectiveness.
Язык: Английский
Процитировано
1Journal of Arid Land, Год журнала: 2025, Номер 17(1), С. 74 - 92
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Geoscience Frontiers, Год журнала: 2023, Номер 14(3), С. 101541 - 101541
Опубликована: Янв. 18, 2023
In this study, the future landslide population amount risk (LPAR) is assessed based on integrated machine learning models (MLMs) and scenario simulation techniques in Shuicheng County, China. Firstly, multiple MLMs were selected hyperparameters optimized, generated 11 cross-integrated to select best model calculate susceptibility; by calculating precipitation for different extreme recurrence periods combining susceptibility results assess hazard. Using town as basic unit, exposure vulnerability of under Shared Socioeconomic Pathways (SSPs) scenarios each assessed, then combined with hazard estimate LPAR 2050. The showed that optimized random forest combination strategy had comprehensive performance assessment. distribution classes similar susceptibility, an increase precipitation, low-hazard area high-hazard decrease shift medium-hazard very classes. high-risk areas populations County are mainly concentrated three southwestern towns high vulnerability, whereas northern Baohua Qinglin at lowest class. increased intensity precipitation. differs significantly among SSPs scenarios, "fossil-fueled development (SSP5)" highest "regional rivalry (SSP3)" scenario. summary, proposed study has a predictive capability. assessment can provide theoretical guidance relevant departments cope socioeconomic challenges make corresponding disaster prevention mitigation plans prevent risks from developmental perspective.
Язык: Английский
Процитировано
17Advances in Space Research, Год журнала: 2024, Номер 74(8), С. 3765 - 3785
Опубликована: Июль 6, 2024
Язык: Английский
Процитировано
6