
European Journal of Operational Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
European Journal of Operational Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
European Journal of Operational Research, Год журнала: 2022, Номер 304(3), С. 865 - 886
Опубликована: Фев. 23, 2022
In the two-echelon vehicle routing problem (2E-VRP), distribution network is split into two echelons. Different vehicles are operated on first and second echelon to maintain economies of scale adhere any restrictions that may be present in either echelon. Intermediate facilities located at borders echelons facilitate consolidation transshipment goods between Examples systems include express delivery, grocery hypermarket products distribution, multi-modal freight transportation, city logistics, e-commerce home delivery services. recent years, body literature 2E-VRP has expanded significantly. Over 60 research papers have appeared scientific so far, which underlines both academic practical relevance 2E-VRPs. this review, we structure revise all 2E-VRP. Mathematical formulations, exact heuristic solution methods, benchmark datasets used test evaluate new algorithms reviewed discussed. This survey concludes with a selected list open areas
Язык: Английский
Процитировано
126IEEE Transactions on Cybernetics, Год журнала: 2021, Номер 52(12), С. 13572 - 13585
Опубликована: Сен. 23, 2021
Existing deep reinforcement learning (DRL)-based methods for solving the capacitated vehicle routing problem (CVRP) intrinsically cope with a homogeneous fleet, in which fleet is assumed as repetitions of single vehicle. Hence, their key to construct solution solely lies selection next node (customer) visit excluding However, vehicles real-world scenarios are likely be heterogeneous different characteristics that affect capacity (or travel speed), rendering existing DRL less effective. In this article, we tackle CVRP (HCVRP), where mainly characterized by capacities. We consider both min-max and min-sum objectives HCVRP, aim minimize longest or total time vehicle(s) fleet. To solve those problems, propose method based on attention mechanism decoder accounting constraint route construction, learns automatically selecting at each step. Experimental results randomly generated instances show that, desirable generalization various sizes, our outperforms state-of-the-art most conventional heuristics, also delivers competitive performance against heuristic method, is, slack induction string removal. addition, extended experiments demonstrate able CVRPLib satisfactory performance.
Язык: Английский
Процитировано
112European Journal of Operational Research, Год журнала: 2023, Номер 309(3), С. 1145 - 1160
Опубликована: Фев. 23, 2023
Язык: Английский
Процитировано
42Journal of the Operational Research Society, Год журнала: 2023, Номер 75(3), С. 423 - 617
Опубликована: Дек. 27, 2023
Throughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied a wide range of contexts. This encyclopedic article consists two main sections: methods applications. The first summarises the up-to-date knowledge provides an overview state-of-the-art key developments in various subdomains field. second offers wide-ranging list areas where applied. is meant be read nonlinear fashion used as point reference by diverse pool readers: academics, researchers, students, practitioners. entries within applications sections are presented alphabetical order. authors dedicate this paper 2023 Turkey/Syria earthquake victims. We sincerely hope advances OR will play role towards minimising pain suffering caused future catastrophes.
Язык: Английский
Процитировано
35European Journal of Operational Research, Год журнала: 2023, Номер 310(1), С. 133 - 155
Опубликована: Фев. 23, 2023
Язык: Английский
Процитировано
27INFORMS journal on computing, Год журнала: 2024, Номер 36(4), С. 943 - 955
Опубликована: Янв. 29, 2024
We introduce PyVRP, a Python package that implements hybrid genetic search in state-of-the-art vehicle routing problem (VRP) solver. The is designed for the VRP with time windows (VRPTW), but can be easily extended to support other variants. PyVRP combines flexibility of performance C++, by implementing (only) critical parts algorithm while being fully customisable at level. polished implementation ranked 1st 2021 DIMACS VRPTW challenge and, after improvements, on static variant EURO meets NeurIPS 2022 competition. code follows good software engineering practices, and well-documented unit tested. freely available under liberal MIT license. Through numerical experiments we show achieves results capacitated VRP. hope enables researchers practitioners quickly build
Язык: Английский
Процитировано
9Computers & Operations Research, Год журнала: 2024, Номер 164, С. 106527 - 106527
Опубликована: Янв. 2, 2024
Язык: Английский
Процитировано
84OR, Год журнала: 2025, Номер unknown
Опубликована: Янв. 25, 2025
Язык: Английский
Процитировано
1Computers & Operations Research, Год журнала: 2021, Номер 136, С. 105475 - 105475
Опубликована: Июль 14, 2021
Язык: Английский
Процитировано
34Operations Research Letters, Год журнала: 2022, Номер 50(2), С. 229 - 234
Опубликована: Фев. 15, 2022
Язык: Английский
Процитировано
28