
Neurosurgical Review, Год журнала: 2025, Номер 48(1)
Опубликована: Апрель 29, 2025
Язык: Английский
Neurosurgical Review, Год журнала: 2025, Номер 48(1)
Опубликована: Апрель 29, 2025
Язык: Английский
BMC Infectious Diseases, Год журнала: 2025, Номер 25(1)
Опубликована: Март 26, 2025
Bloodstream infection (BSI) is a significant cause of mortality in patients with hematologic malignancies(HMs), particularly amid rising antibiotic resistance. This study aimed to analyze pathogen distribution, drug-resistance patterns and develop novel predictive model for 30-day HM BSIs. A retrospective analysis 231 positive blood cultures was conducted. Logistic regression identified risk factors mortality. Th1/Th2 cytokines were collected at BSI onset, LASSO restricted cubic spline used refine predictors. Seven machine learning(ML) algorithm (XGBoost, Regression, LightGBM, RandomForest, AdaBoost, GBDT GNB) trained using 10-fold cross-validation performance evaluated the ROC, calibration plots, decision learning curves Shapley Additive Explanations (SHAP) analysis. The developed by integrating clinical features, aiming enhance accuracy prediction. Among cohort, acute myeloid leukemia (38%) most common HM, while gram negative bacteria (64%) predominant pathogens causing BSI. Age, polymicrobial BSI, IL-4, IL-6 AST levels predictors Regression achieved AUCs 0.802, 0.792, 0.822 training, validation, test cohorts, respectively, strong benefit shown curves. SHAP highlighted IL-4 as key introduces ML-based features predict BSIs, demonstrating applicability.
Язык: Английский
Процитировано
0Neurosurgical Review, Год журнала: 2025, Номер 48(1)
Опубликована: Апрель 29, 2025
Язык: Английский
Процитировано
0