ADVANCED SKIN CANCER DETECTION USING CONVOLUTIONAL NEURAL NETWORKS AND TRANSFER LEARNING DOI Open Access
Emrah Aslan, Yıldırım ÖZÜPAK

Middle East Journal of Science, Год журнала: 2024, Номер unknown

Опубликована: Дек. 18, 2024

This study investigates the effectiveness of MobileNetV2 transfer learning method and a deep based Convolutional Neural Network (CNN) model in categorization malignant benign skin lesions cancer diagnosis. Since is disease that can be cured with early detection but fatal if delayed, accurate diagnosis great importance. The was trained architecture performed classification task high accuracy on images lesions. Metrics such as accuracy, recall, precision F1 score obtained during training validation processes support performance model. 92.97%, Recall 92.71%, Precision 94.70% 93.47%. results show CNN-based reliable effective tool for diagnosis, small fluctuations phase require further data hyperparameter optimization to improve generalization ability demonstrates models enhanced offer powerful solution medical image problems have potential contribute development systems healthcare field.

Язык: Английский

A novel CNN-ViT-based deep learning model for early skin cancer diagnosis DOI
İshak Paçal, B. Özdemir, Javanshir Zeynalov

и другие.

Biomedical Signal Processing and Control, Год журнала: 2025, Номер 104, С. 107627 - 107627

Опубликована: Янв. 28, 2025

Язык: Английский

Процитировано

20

A robust deep learning framework for multiclass skin cancer classification DOI Creative Commons
Burhanettin Özdemir, İshak Paçal

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Фев. 10, 2025

Skin cancer represents a significant global health concern, where early and precise diagnosis plays pivotal role in improving treatment efficacy patient survival rates. Nonetheless, the inherent visual similarities between benign malignant lesions pose substantial challenges to accurate classification. To overcome these obstacles, this study proposes an innovative hybrid deep learning model that combines ConvNeXtV2 blocks separable self-attention mechanisms, tailored enhance feature extraction optimize classification performance. The inclusion of initial two stages is driven by their ability effectively capture fine-grained local features subtle patterns, which are critical for distinguishing visually similar lesion types. Meanwhile, adoption later allows selectively prioritize diagnostically relevant regions while minimizing computational complexity, addressing inefficiencies often associated with traditional mechanisms. was comprehensively trained validated on ISIC 2019 dataset, includes eight distinct skin categories. Advanced methodologies such as data augmentation transfer were employed further robustness reliability. proposed architecture achieved exceptional performance metrics, 93.48% accuracy, 93.24% precision, 90.70% recall, 91.82% F1-score, outperforming over ten Convolutional Neural Network (CNN) based Vision Transformer (ViT) models tested under comparable conditions. Despite its robust performance, maintains compact design only 21.92 million parameters, making it highly efficient suitable deployment. Proposed Model demonstrates accuracy generalizability across diverse classes, establishing reliable framework clinical practice.

Язык: Английский

Процитировано

14

Quantum computational infusion in extreme learning machines for early multi-cancer detection DOI Creative Commons
Anas Bilal, Muhammad Shafiq, Waeal J. Obidallah

и другие.

Journal Of Big Data, Год журнала: 2025, Номер 12(1)

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

9

Comparison of deep transfer learning models for classification of cervical cancer from pap smear images DOI Creative Commons
Harmanpreet Kaur, Reecha Sharma,

Jagroop Kaur

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

3

An Innovative Deep Learning Framework for Skin Cancer Detection Employing ConvNeXtV2 and Focal Self-Attention Mechanisms DOI Creative Commons
B. Özdemir, İshak Paçal

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103692 - 103692

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

16

Skin cancer classification leveraging multi-directional compact convolutional neural network ensembles and gabor wavelets DOI Creative Commons
Omneya Attallah

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Сен. 4, 2024

Язык: Английский

Процитировано

8

A novel hybrid ConvNeXt-based approach for enhanced skin lesion classification DOI

İbrahim Aruk,

İshak Paçal, Ahmet Nusret Toprak

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127721 - 127721

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

1

Can deep learning effectively diagnose cardiac amyloidosis with 99mTc-PYP scintigraphy? DOI
Adem Maman, İshak Paçal, Fatih Batı

и другие.

Journal of Radioanalytical and Nuclear Chemistry, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 19, 2024

Язык: Английский

Процитировано

6

Utilizing convolutional neural networks and vision transformers for precise corn leaf disease identification DOI
İshak Paçal, Gültekin Işık

Neural Computing and Applications, Год журнала: 2024, Номер unknown

Опубликована: Дек. 5, 2024

Язык: Английский

Процитировано

6

A lightweight deep learning method to identify different types of cervical cancer DOI Creative Commons
Md Humaion Kabir Mehedi,

Moumita Khandaker,

Shaneen Ara

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Ноя. 27, 2024

Cervical cancer is the second most common in women's bodies after breast cancer. develops from dysplasia or cervical intraepithelial neoplasm (CIN), early stage of disease, and characterized by aberrant growth cells cervix lining. It primarily caused Human Papillomavirus (HPV) infection, which spreads through sexual activity. This study focuses on detecting types efficiently using a novel lightweight deep learning model named CCanNet, combines squeeze block, residual blocks, skip layer connections. SipakMed, not only popular but also publicly available dataset, was used this study. We conducted comparative analysis between several transfer transformer models such as VGG19, VGG16, MobileNetV2, AlexNet, ConvNeXT, DeiT_tiny, MobileViT, Swin Transformer with proposed CCanNet. Our outperformed other state-of-the-art models, 98.53% accuracy lowest number parameters, 1,274,663. In addition, accuracy, precision, recall, F1 score were to evaluate performance models. Finally, explainable AI (XAI) applied analyze CCanNet ensure results trustworthy.

Язык: Английский

Процитировано

5