Recent Advancements in Applying Machine Learning in Power-to-X Processes: A Literature Review DOI Open Access
S. Mohammad Shojaei, Reihaneh Aghamolaei, Mohammad Reza Ghaani

и другие.

Sustainability, Год журнала: 2024, Номер 16(21), С. 9555 - 9555

Опубликована: Ноя. 2, 2024

For decades, fossil fuels have been the backbone of reliable energy systems, offering unmatched density and flexibility. However, as world shifts toward renewable energy, overcoming limitations intermittent power sources requires a bold reimagining storage integration. Power-to-X (PtX) technologies, which convert excess electricity into storable carriers, offer promising solution for long-term sector coupling. Recent advancements in machine learning (ML) revolutionized PtX systems by enhancing efficiency, scalability, sustainability. This review provides detailed analysis how ML techniques, such deep reinforcement learning, data-driven optimization, predictive diagnostics, are driving innovation Power-to-Gas (PtG), Power-to-Liquid (PtL), Power-to-Heat (PtH) systems. example, has improved real-time decision-making PtG reducing operational costs improving grid stability. Additionally, diagnostics powered increased system reliability identifying early failures critical components proton exchange membrane fuel cells (PEMFCs). Despite these advancements, challenges data quality, processing, scalability remain, presenting future research opportunities. These to decarbonizing hard-to-electrify sectors, heavy industry, transportation, aviation, aligning with global sustainability goals.

Язык: Английский

Energy production from farming waste: a review DOI

Tumpa R. Sarker,

Sonil Nanda

Environmental Chemistry Letters, Год журнала: 2025, Номер unknown

Опубликована: Май 5, 2025

Язык: Английский

Процитировано

0

Sustainability assessment of carbonaceous nanostructured materials for efficient hydrogen storage DOI
Behrouz Nemati, Mohammadreza Kamali, Tejraj M. Aminabhavi

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 135, С. 477 - 498

Опубликована: Май 9, 2025

Язык: Английский

Процитировано

0

Nitrogen-Doped Coronene for Enhanced Ch4 and Co2 Adsorption: A Theoretical Study DOI
G. R. Berdiyorov, Alessandro Sinopoli, Abdraman M. Moussa

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Roles of lignin in pore development during activation of peach wood DOI
Chao Li, Bo Gao, Zhihui Pan

и другие.

Renewable Energy, Год журнала: 2024, Номер unknown, С. 121656 - 121656

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

2

Decarbonization of Metallurgy and Steelmaking Industries Using Biochar: A Review DOI Creative Commons
Tumpa R. Sarker, Dilshad Zahan Ethen, Sonil Nanda

и другие.

Chemical Engineering & Technology, Год журнала: 2024, Номер 47(12)

Опубликована: Окт. 24, 2024

Abstract The iron and steelmaking industries play a significant role in the manufacturing sector but result greenhouse gas emissions. Biochar has recently gained attention as potential substitute for coal metallurgical processes due to its carbon capture potential. This review explores of biochar sustainable industries. Notable research works have shown that substituting amounts ranging from low 5 % high 50 can be feasible beneficial such coke making, sintering, blast furnaces, electric furnaces. information presented this applied create competitive alternatives fossil fuels help decarbonize

Язык: Английский

Процитировано

2

Wood-based electrode and electrolyte for sustainable high-performance solid-state supercapacitor DOI
Ridwan Tobi Ayinla, Islam Elsayed, El Barbary Hassan

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 108, С. 115025 - 115025

Опубликована: Дек. 19, 2024

Язык: Английский

Процитировано

2

Low-cost excellent-adhesion flexible poly(Catechol/Polyamine) semiconductor loaded on CdS photoanode for promoting photoelectrochemical water splitting DOI

Zhiling Huang,

Liu D, Yue Meng

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 101, С. 105 - 111

Опубликована: Дек. 31, 2024

Язык: Английский

Процитировано

1

Recent Advancements in Applying Machine Learning in Power-to-X Processes: A Literature Review DOI Open Access
S. Mohammad Shojaei, Reihaneh Aghamolaei, Mohammad Reza Ghaani

и другие.

Sustainability, Год журнала: 2024, Номер 16(21), С. 9555 - 9555

Опубликована: Ноя. 2, 2024

For decades, fossil fuels have been the backbone of reliable energy systems, offering unmatched density and flexibility. However, as world shifts toward renewable energy, overcoming limitations intermittent power sources requires a bold reimagining storage integration. Power-to-X (PtX) technologies, which convert excess electricity into storable carriers, offer promising solution for long-term sector coupling. Recent advancements in machine learning (ML) revolutionized PtX systems by enhancing efficiency, scalability, sustainability. This review provides detailed analysis how ML techniques, such deep reinforcement learning, data-driven optimization, predictive diagnostics, are driving innovation Power-to-Gas (PtG), Power-to-Liquid (PtL), Power-to-Heat (PtH) systems. example, has improved real-time decision-making PtG reducing operational costs improving grid stability. Additionally, diagnostics powered increased system reliability identifying early failures critical components proton exchange membrane fuel cells (PEMFCs). Despite these advancements, challenges data quality, processing, scalability remain, presenting future research opportunities. These to decarbonizing hard-to-electrify sectors, heavy industry, transportation, aviation, aligning with global sustainability goals.

Язык: Английский

Процитировано

0