Augmentation of piezoelectric thin-film flapping velocimetry turbulence strength detection via machine learning DOI Creative Commons

Ted Sian Lee,

Ean Hin Ooi, Wei Sea Chang

и другие.

Physics of Fluids, Год журнала: 2025, Номер 37(1)

Опубликована: Янв. 1, 2025

Qualitatively evaluating the fundamental mechanical characteristics of square-fractal-grid (SFG)-generated turbulent flow using piezoelectric thin-film flapping velocimetry (PTFV) is rather time-consuming. More importantly, its sensitivity in detecting high-frequency, fine-scale fluctuations constrained by high-speed camera specifications. To reduce dependency on imaging future PTFV implementations, regression models are trained with supervised machine learning to determine correlation between piezoelectric-generated voltage V and corresponding local equivalent velocity fluctuation. Using tip deflection δ data as predictors responses, respectively, Trilayered Neural Network (TNN) emerges best-performing model compared linear regression, trees, support vector machines, Gaussian process ensembles trees. TNN from (i) lower quarter, (ii) bottom left corner, (iii) central opening SFG-grid provide accurate predictions insert-induced centerline streamwise cross-sectional lateral turbulence intensity root mean square-δ, average errors not exceeding 5%. The output predicted response, which considers small-scale across entire surface, better expresses integral length scale (38% smaller) forcing (270% greater), particularly at corner SFG where eddies significant. Furthermore, effectively captures occasional extensive excitation forces large-scale eddies, resulting a more balanced force distribution. In short, this study paves path for comprehensive expedited dynamics characterization detection via PTFV, potential deployment high Reynolds number flows generated various grid configurations.

Язык: Английский

ViscoelasticNet: A physics informed neural network framework for stress discovery and model selection DOI
Sukirt Thakur, Maziar Raissi, Arezoo M. Ardekani

и другие.

Journal of Non-Newtonian Fluid Mechanics, Год журнала: 2024, Номер 330, С. 105265 - 105265

Опубликована: Июнь 5, 2024

Язык: Английский

Процитировано

5

Stacked networks improve physics-informed training: Applications to neural networks and deep operator networks DOI Open Access
Amanda A. Howard,

Sarah H. Murphy,

Shady E. Ahmed

и другие.

Foundations of Data Science, Год журнала: 2024, Номер 7(1), С. 134 - 162

Опубликована: Июль 2, 2024

Язык: Английский

Процитировано

5

A physics-informed neural network framework for multi-physics coupling microfluidic problems DOI Creative Commons
Runze Sun, Hyogu Jeong, Jiachen Zhao

и другие.

Computers & Fluids, Год журнала: 2024, Номер 284, С. 106421 - 106421

Опубликована: Сен. 4, 2024

Язык: Английский

Процитировано

5

Additive-feature-attribution methods: A review on explainable artificial intelligence for fluid dynamics and heat transfer DOI Creative Commons
A. Cremades, Sergio Hoyas, Ricardo Vinuesa

и другие.

International Journal of Heat and Fluid Flow, Год журнала: 2024, Номер 112, С. 109662 - 109662

Опубликована: Дек. 9, 2024

Язык: Английский

Процитировано

4

Augmentation of piezoelectric thin-film flapping velocimetry turbulence strength detection via machine learning DOI Creative Commons

Ted Sian Lee,

Ean Hin Ooi, Wei Sea Chang

и другие.

Physics of Fluids, Год журнала: 2025, Номер 37(1)

Опубликована: Янв. 1, 2025

Qualitatively evaluating the fundamental mechanical characteristics of square-fractal-grid (SFG)-generated turbulent flow using piezoelectric thin-film flapping velocimetry (PTFV) is rather time-consuming. More importantly, its sensitivity in detecting high-frequency, fine-scale fluctuations constrained by high-speed camera specifications. To reduce dependency on imaging future PTFV implementations, regression models are trained with supervised machine learning to determine correlation between piezoelectric-generated voltage V and corresponding local equivalent velocity fluctuation. Using tip deflection δ data as predictors responses, respectively, Trilayered Neural Network (TNN) emerges best-performing model compared linear regression, trees, support vector machines, Gaussian process ensembles trees. TNN from (i) lower quarter, (ii) bottom left corner, (iii) central opening SFG-grid provide accurate predictions insert-induced centerline streamwise cross-sectional lateral turbulence intensity root mean square-δ, average errors not exceeding 5%. The output predicted response, which considers small-scale across entire surface, better expresses integral length scale (38% smaller) forcing (270% greater), particularly at corner SFG where eddies significant. Furthermore, effectively captures occasional extensive excitation forces large-scale eddies, resulting a more balanced force distribution. In short, this study paves path for comprehensive expedited dynamics characterization detection via PTFV, potential deployment high Reynolds number flows generated various grid configurations.

Язык: Английский

Процитировано

0