Development of Z number-based fuzzy inference system to predict bearing capacity of circular foundations DOI Creative Commons
Shahab Hosseini, Behrouz Gordan, Erol Kalkan

и другие.

Artificial Intelligence Review, Год журнала: 2024, Номер 57(6)

Опубликована: Май 20, 2024

Abstract Precise bearing capacity prediction of circular foundations is essential in civil engineering design and construction. The affected by factors such as depth, density soil, internal angle friction, cohesion foundation radius. In this paper, an innovative perspective on a fuzzy inference system (FIS) was proposed to predict capacity. uncertainty rules eliminated using Z-number theory. effective parameters, i.e., radius were considered inputs the model. To compare regression FIS model with Z-based FIS, statistical indices coefficient determination (R 2 ), root mean square error (RMSE), variance account for (VAF) employed. For training testing Z-FIS, R (0.977 0.971), RMSE (1.645 1.745), VAF (98.549% 98.138), whereas method, values (0.912 0.904), (5.962 6.76), (90.12% 88.49%). It should be mentioned that Z theory decreased computational time 89.28% (174.04 s 18.65 s). comparison indicators presented models revealed superiority Z-FIS over FIS. Notably, sensitivity analysis most parameters are soil density.

Язык: Английский

Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm DOI
Jian Zhou, Shuangli Zhu,

Yingui Qiu

и другие.

Acta Geotechnica, Год журнала: 2022, Номер 17(4), С. 1343 - 1366

Опубликована: Янв. 29, 2022

Язык: Английский

Процитировано

119

Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete DOI
Liborio Cavaleri, Mohammad Sadegh Barkhordari, Constantinos C. Repapis

и другие.

Construction and Building Materials, Год журнала: 2022, Номер 359, С. 129504 - 129504

Опубликована: Окт. 28, 2022

Язык: Английский

Процитировано

114

Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations DOI
Jian Zhou, Shuai Huang,

Yingui Qiu

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2022, Номер 124, С. 104494 - 104494

Опубликована: Апрель 5, 2022

Язык: Английский

Процитировано

99

Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential DOI
Jian Zhou, Shuai Huang, Tao Zhou

и другие.

Artificial Intelligence Review, Год журнала: 2022, Номер 55(7), С. 5673 - 5705

Опубликована: Фев. 19, 2022

Язык: Английский

Процитировано

96

Data-Driven Compressive Strength Prediction of Fly Ash Concrete Using Ensemble Learner Algorithms DOI Creative Commons
Mohammad Sadegh Barkhordari, Danial Jahed Armaghani, Ahmed Salih Mohammed

и другие.

Buildings, Год журнала: 2022, Номер 12(2), С. 132 - 132

Опубликована: Янв. 27, 2022

Concrete is one of the most popular materials for building all types structures, and it has a wide range applications in construction industry. Cement production use have significant environmental impact due to emission different gases. The fly ash concrete (FAC) crucial eliminating this defect. However, varied features cementitious composites exist, understanding their mechanical characteristics critical safety. On other hand, forecasting concrete, machine learning approaches are extensively employed algorithms. goal work compare ensemble deep neural network models, i.e., super learner algorithm, simple averaging, weighted integrated stacking, as well separate stacking order develop an accurate approach estimating compressive strength FAC reducing high variance predictive models. Separate with random forest meta-learner received predictions (97.6%) highest coefficient determination lowest mean square error variance.

Язык: Английский

Процитировано

82

Assessment of tunnel blasting-induced overbreak: A novel metaheuristic-based random forest approach DOI
Biao He, Danial Jahed Armaghani, Sai Hin Lai

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2023, Номер 133, С. 104979 - 104979

Опубликована: Янв. 5, 2023

Язык: Английский

Процитировано

78

Prediction of bearing capacity of pile foundation using deep learning approaches DOI
Manish Kumar,

Divesh Ranjan Kumar,

Jitendra Khatti

и другие.

Frontiers of Structural and Civil Engineering, Год журнала: 2024, Номер 18(6), С. 870 - 886

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

30

A survey on binary metaheuristic algorithms and their engineering applications DOI Open Access
Jeng‐Shyang Pan, Pei Hu, Václav Snåšel

и другие.

Artificial Intelligence Review, Год журнала: 2022, Номер 56(7), С. 6101 - 6167

Опубликована: Ноя. 21, 2022

Язык: Английский

Процитировано

68

Prediction of Probability of Liquefaction Using Soft Computing Techniques DOI

Divesh Ranjan Kumar,

Pijush Samui,

Avijit Burman

и другие.

Journal of The Institution of Engineers (India) Series A, Год журнала: 2022, Номер 103(4), С. 1195 - 1208

Опубликована: Сен. 7, 2022

Язык: Английский

Процитировано

58

Cross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithms DOI
Jian Zhou,

Xiaojie Shen,

Yingui Qiu

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2022, Номер 126, С. 104570 - 104570

Опубликована: Май 26, 2022

Язык: Английский

Процитировано

48