Design of an Iterative Cluster-Based Model for Detection of Brain Tumors Using Deep Transfer Learning Models DOI Creative Commons

Yenumala Sankararao,

Syed Khasim

Traitement du signal, Год журнала: 2024, Номер 41(06), С. 2909 - 2922

Опубликована: Дек. 31, 2024

A tumor develops when brain cells exhibit abnormal growth patterns within various body locations, characterized by irregular boundaries and shapes.Typically, these tumors rapid proliferation, increasing at a rate of approximately 1.6% per day.This cell can lead to invisible illnesses alterations in psychological behavioral functions, contributing rising trend adult mortality rates worldwide.Therefore, Brain must be detected early.Failure do so may cause deadly, incurable condition.Effective therapy improves survival if early.Magnetic Resonance Imaging (MRI) is essential for finding classifying tumors.The manual nature diagnosis classification makes it prone errors, necessitating the development automated processes improved accuracy.In light considerations, we have devised with fully way use MR images find classify tumors.Our approach encompasses three key phases: pre-processing, segmentation, classification.To detect brain, utilized MRI, employing deep transfer transformed VGG19 model.Notably, our research demonstrates superior using other pre-trained Convolutional Neural Network (CNN) models such as AlexNet VGG-16.The learning model yielded accuracy achieving 98.65% (dataset 1) 99.18% 2) different datasets.

Язык: Английский

The Impact of Backbone Selection in Yolov8 Models on Brain Tumor Localization DOI
Ramin Ranjbarzadeh, Martin Crane, Malika Bendechache

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

3

Comprehensive multimodal approach for Parkinson’s disease classification using artificial intelligence: insights and model explainability DOI
Hossam Magdy Balaha, Asmaa El-Sayed Hassan,

Ranaa Ahmed

и другие.

Soft Computing, Год журнала: 2025, Номер unknown

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

Transformative Approaches in Breast Cancer Detection: Integrating Transformers into Computer-Aided Diagnosis for Histopathological Classification DOI Creative Commons
Majed Alwateer, Amna Bamaqa, Mohammad Farsi

и другие.

Bioengineering, Год журнала: 2025, Номер 12(3), С. 212 - 212

Опубликована: Фев. 20, 2025

Breast cancer (BC) remains a leading cause of cancer-related mortality among women worldwide, necessitating advancements in diagnostic methodologies to improve early detection and treatment outcomes. This study proposes novel twin-stream approach for histopathological image classification, utilizing both histopathologically inherited vision-based features enhance precision. The first stream utilizes Virchow2, deep learning model designed extract high-level features, while the second employs Nomic, transformer model, capture spatial contextual information. fusion these streams ensures comprehensive feature representation, enabling achieve state-of-the-art performance on BACH dataset. Experimental results demonstrate superiority approach, with mean accuracy 98.60% specificity 99.07%, significantly outperforming single-stream methods related studies. Statistical analyses, including paired t-tests, ANOVA, correlation studies, confirm robustness reliability model. proposed not only improves but also offers scalable efficient solution clinical applications, addressing challenges resource constraints increasing demands.

Язык: Английский

Процитировано

0

AOA-guided hyperparameter refinement for precise medical image segmentation DOI
Hossam Magdy Balaha, Waleed M. Bahgat, Mansourah Aljohani

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 120, С. 547 - 560

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

Early Diagnosis of Prostate Cancer Using Parametric Estimation of IVIM from DW-MRI DOI Open Access
Hossam Magdy Balaha, Sarah M. Ayyad, Ahmed Alksas

и другие.

2022 IEEE International Conference on Image Processing (ICIP), Год журнала: 2023, Номер unknown, С. 2910 - 2914

Опубликована: Сен. 11, 2023

Prostate cancer (PCa) is a widespread type of that leads to numerous fatalities and high financial cost. The chance survival for PCa patients increases when the disease detected at an early stage. This study discusses development non-invasive computer-aided diagnosis (CAD) system utilizes intravoxel incoherent motion (IVIM) parameters detect diagnose prostate cancer. focuses on IVIM, which can separate diffusion water molecules in capillaries from molecular outside vessels, its diagnostic efficacy central peripheral zones proposes two-step segmentation approach tumor detection, starting with precise localization gland using robust level-sets technique then Attention U-Net extract tumor-containing region interest (ROI) segmented image. evaluates performance CAD system, best classifier IVIM differentiation, value compared ADC. results this contribute methods detection diagnosis. (CZ + PZ) utilized extra trees (ETC) were implemented without principal component analysis (PCA) standardization scaling achieved metrics. They produced accuracy 84.62%, balanced 82.58%, precision 80%, specificity 67.86%, sensitivity 97.30%, F1-score 87.12%, IoU 78.26%, ROC 83.88%, weighted sum metric (WSM) 82.79%.

Язык: Английский

Процитировано

7

Advancing eye disease detection: A comprehensive study on computer-aided diagnosis with vision transformers and SHAP explainability techniques DOI
Hossam Magdy Balaha, Asmaa El-Sayed Hassan,

Ranaa Ahmed

и другие.

Journal of Applied Biomedicine, Год журнала: 2024, Номер 45(1), С. 23 - 33

Опубликована: Дек. 15, 2024

Язык: Английский

Процитировано

1

An AI-Based CAP Framework for Wilms’ Tumor Preoperative Chemotherapy Susceptibility DOI
Israa Sharaby, Ahmed Alksas,

A. Nashat

и другие.

2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Год журнала: 2023, Номер unknown, С. 1 - 4

Опубликована: Апрель 18, 2023

In the field of pediatric oncology, Wilms' tumor is a common occurrence and known for its high rate recurrence. The study's purpose was to create computer-based prediction system response preoperative chemotherapy. developed based on contrast-enhanced CT scans using six methods. Firstly, images were delineated, followed by characterization tumor's form 3D histogram oriented gradients. Shape features then extracted spherical harmonics, sphericity, elongation. tumors' functionality also demonstrated determining intensity changes in contrast phases. Feature fusion applied features, responsive/non-responsive results found classifier support vector machine. an accuracy 96.83% total, detecting 97.83% sensitivity accurately identifying 94.12% specificity. Additionally, imaging markers used predict early

Язык: Английский

Процитировано

3

A Neuroimaging ML-Based Framework for Anosmia Grading in Covid-19 DOI
Hossam Magdy Balaha,

Mayada Elgendy,

Ahmed Alksas

и другие.

Опубликована: Май 27, 2024

Язык: Английский

Процитировано

0

A Dual-Branch Lightweight Model for Extracting Characteristics to Classify Brain Tumors DOI Open Access

G. Sangeetha,

G. Vadivu,

Sundara Raja Perumal R.

и другие.

Journal of Advances in Information Technology, Год журнала: 2024, Номер 15(9), С. 1035 - 1046

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Framework for segmentation, optimization, and recognition of multivariate brain tumors DOI
Hossam Magdy Balaha, Asmaa El-Sayed Hassan

Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 1 - 32

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0