SN Computer Science, Год журнала: 2024, Номер 6(1)
Опубликована: Дек. 20, 2024
Язык: Английский
SN Computer Science, Год журнала: 2024, Номер 6(1)
Опубликована: Дек. 20, 2024
Язык: Английский
Buildings, Год журнала: 2025, Номер 15(9), С. 1552 - 1552
Опубликована: Май 4, 2025
Parks are an important component of urban ecosystems, yet traditional research often relies on single-modal data, such as text or images alone, making it difficult to comprehensively and accurately capture the complex emotional experiences visitors their relationships with environment. This study proposes a park perception understanding model based multimodal text–image data bidirectional attention mechanism. By integrating image incorporates encoder representations from transformers (BERT)-based feature extraction module, Swin Transformer-based cross-attention fusion enabling more precise assessment visitors’ in parks. Experimental results show that compared methods residual network (ResNet), recurrent neural (RNN), long short-term memory (LSTM), proposed achieves significant advantages across multiple evaluation metrics, including mean squared error (MSE), absolute (MAE), root (RMSE), coefficient determination (R2). Furthermore, using SHapley Additive exPlanations (SHAP) method, this identified key factors influencing experiences, “water”, “green”, “sky”, providing scientific basis for management optimization.
Язык: Английский
Процитировано
0Artificial Intelligence Review, Год журнала: 2025, Номер 58(5)
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
0Learning and analytics in intelligent systems, Год журнала: 2025, Номер unknown, С. 186 - 194
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Advances in computational intelligence and robotics book series, Год журнала: 2025, Номер unknown, С. 79 - 94
Опубликована: Апрель 17, 2025
The rapid technological advancements have given machines the power to think and decide. This has been largely fueled by developments in 5G, IoT, Big Data, Cloud, Edge Computing, AI technologies such as Machine Learning, Deep Computer Vision. chapter on IoT discusses exponential growth is edge computing, which makes data processing faster secure compared a traditional cloud system. It identifies some computing applications AWS that involve Data architectures with low-cost techniques for denoising sensor fusion achieve actionables. takes its audience through integration of technologies, facilitated an architecture diagram, applied smart buildings, vehicles, traffic management, factories, surveillance systems, discussing challenges privacy security avenues will be open innovations future research opportunities within IoT-enabled systems.
Язык: Английский
Процитировано
0PLoS ONE, Год журнала: 2025, Номер 20(4), С. e0321011 - e0321011
Опубликована: Апрель 28, 2025
The rapid development of social media has significantly impacted sentiment analysis, essential for understanding public opinion and predicting trends. However, modality fusion in analysis can introduce a lot noise because the differences semantic representations among various modalities, ultimately impacting accuracy classification results. Thus, this paper presents Semantic Enhancement Cross-Modal Interaction Fusion (SECIF) model to address these issues. Firstly, BERT ResNet extract feature from text images. Secondly, GMHA mechanism is proposed aggregate important information mitigate influence noise. Then, an ICN module created capture complex contextual dependencies enhance capability representations. Finally, cross-modal interaction implemented. Text features are considered primary, image auxiliary, enabling profound integration textual visual features. model's performance optimized by combining cross-entropy KL divergence losses. experiments conducted using dataset collected events on Sina Weibo. results demonstrate that outperforms comparison models. SECIF improves 11.19%, 82.27%, 4.83% over average text-only, image-only, multimodal models, respectively. compared with ten baseline models publicly available datasets. experimental show 4.70% F1 score 6.56%. Through governments better understand emotions trends, facilitating more targeted effective management strategies.
Язык: Английский
Процитировано
0Procedia Computer Science, Год журнала: 2025, Номер 258, С. 981 - 992
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Procedia Computer Science, Год журнала: 2025, Номер 258, С. 3115 - 3125
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 28, 2024
Язык: Английский
Процитировано
0SN Computer Science, Год журнала: 2024, Номер 6(1)
Опубликована: Дек. 20, 2024
Язык: Английский
Процитировано
0