Implementation of Artificial Neural Network for Forecasting California Bearing Ratio of Treated Cement-Laterite Soil Improved with Bamboo Leaf Ash DOI Creative Commons
Emeka S. Nnochiri, Imhade P. Okokpujie, Rajneesh Kumar Singh

и другие.

Revue des composites et des matériaux avancés, Год журнала: 2024, Номер 34(6), С. 755 - 765

Опубликована: Дек. 28, 2024

Finding the California Bearing Ratio (CBR) of soil stabilised by an environmentally friendly binder composite is one most important steps in designing appropriate mix.By utilising artificial neural network (ANN) to forecast parameters and additions Portland cement Bamboo Leaf Ash (BLA), this study aims estimate treated cement-lateritic soils.The precise accurate findings are obtained selecting six factors as input variables.Maximum Dry Density (MDD) (kg/m 3 ), Plasticity Index (PI) (%), Liquid Limit (LL) Cement (BLA) OMC (%) were variables.In contrast, output variables CBR soaked unsoaked (%).1288 samples from a database used investigation.Training done using multilayer perceptronbackpropagation algorithm.The topology acquired after fixing several hidden neurones.With 99.5% accuracy rate, model can predict results.

Язык: Английский

Predicting soil stress–strain behaviour with bidirectional long short-term memory networks DOI Creative Commons
Kacper Cerek,

Arjun Gupta,

Duy Anh Dao

и другие.

Опубликована: Май 15, 2025

Purpose Artificial intelligence, particularly deep learning (DL), has increasingly influenced various scientific fields, including soil mechanics. This paper aims to present a novel DL application of long short-term memory (LSTM) networks for predicting behaviour during constant rate strain (CRS) tests. Design/methodology/approach LSTMs are adept at capturing long-term dependencies in sequential data, making them suitable the complex, nonlinear stress–strain soil. evaluates LSTM configurations, optimising parameters such as step size, batch data sampling and training subset size balance prediction accuracy computational efficiency. The study uses comprehensive set from numerical finite element method simulations conducted with PLAXIS 2D laboratory CRS Findings proposed model, trained on lower stress levels, accurately forecasts higher levels. optimal setup achieved median error 3.59% 5.10% 3.86% presenting setup’s effectiveness. Originality/value approach reduces required time complete extensive testing, aligning sustainable industrial practices. findings suggest that can enhance geotechnical engineering applications by efficiently behaviour.

Язык: Английский

Процитировано

0

Prediction of Rail Ballast Breakage Using a Hybrid Ml Methodology DOI

Srinivas Alagesan,

Ana Heitor, Rakesh Sai Malisetty

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Augmented intelligence framework for real-time ground assessment under significant uncertainty DOI Creative Commons
Javad Ghorbani,

Sougol Aghdasi,

Majidreza Nazem

и другие.

Engineering With Computers, Год журнала: 2025, Номер unknown

Опубликована: Фев. 11, 2025

Abstract Real-time assessment of unsaturated soils through deflection tests is challenging due to the complex effects water and air in soil pores, which significantly impact test outcomes but are difficult quantify, especially when key data like gravimetric content suction incomplete or missing. While human expertise intuition valuable high-pressure scenarios ground during compaction, they prone biases. AI-driven solutions excel at processing datasets often require highly specialised inputs, may not always be readily available. This paper aims develop a robust pragmatic approach decision-support by combining insight with AI’s computational power principles from mechanics. outlines limitations current practices discusses challenges developing reliable using on soils. To address these challenges, an augmented intelligence framework introduced that leverages fuzzy inputs for missing information incorporates sophisticated self-improving mechanism estimate data, based insights gained calibration. enhances after validation recent field trial particularly uncertain subsurface conditions. The study also demonstrates framework’s resilience qualitative assessments, maintaining accuracy across range assumptions about content.

Язык: Английский

Процитировано

0

Rock Slope Stability Prediction: A Review of Machine Learning Techniques DOI

Arifuggaman Arif,

Chunlei Zhang,

Mahabub Hasan Sajib

и другие.

Geotechnical and Geological Engineering, Год журнала: 2025, Номер 43(3)

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

Application of generative AI to automate numerical analysis and synthetic data generation in geotechnical engineering DOI Creative Commons
Ali Parsa-Pajouh

Опубликована: Фев. 19, 2025

Purpose This study explores the integration of generative artificial intelligence (AI) into numerical analysis workflows in geotechnical engineering to address challenges generating synthetic datasets. aims create a framework that allows practitioners with limited programming skills automate complex simulations, enabling development extensive data sets for AI and machine learning applications. Design/methodology/approach The proposes seven-step methodology using finite element method Python auotmate modelling. Generative AI, specifically ChatGPT, is used as virtual assistant guide through automation. validated pilot predicting excavation-induced ground displacement Sydney’s Hawkesbury Sandstone. Findings Integrating accelerates generation improves quality indicates generated datasets closely align real-world measurements, confirming robustness reliability proposed framework. Research limitations/implications study’s accuracy may be affected by assumptions input parameter quality. Future research should explore more conditions, such 3D effects, further validate enhance methodology. Practical implications provides an efficient solution generate datassets training, reducing reliance on experienced programmers. It streamlines enhances data-driven decision-making engineering. Originality/value paper introduces novel workflows, offering innovative approach generation. serves valuable tool advancing applications engineering, particularly those experience.

Язык: Английский

Процитировано

0

Prediction of rail ballast breakage using a hybrid ML methodology DOI Creative Commons

Srinivas Alagesan,

Ana Heitor, Rakesh Sai Malisetty

и другие.

Transportation Geotechnics, Год журнала: 2025, Номер unknown, С. 101555 - 101555

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Application of Artificial Intelligence in Reactive Soil Research: A Scientometric Analysis DOI Creative Commons
Bertrand Teodosio, Piyal Wasantha Pallewela Liyanage, Ehsan Yaghoubi

и другие.

Geotechnical and Geological Engineering, Год журнала: 2025, Номер 43(4)

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Slope rockbolting using key block theory: Force transfer and artificial intelligence-assisted multi-objective optimisation DOI Creative Commons
Jessica Ka Yi Chiu, Charlie C. Li, Ole J. Mengshoel

и другие.

Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2025, Номер unknown

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Estimation of Soil Deformation Modulus from Cone Penetration Test Data Using Machine-Learning Methods DOI
Ян Офрихтер,

A. B. Ponomarev

Soil Mechanics and Foundation Engineering, Год журнала: 2025, Номер unknown

Опубликована: Апрель 26, 2025

Язык: Английский

Процитировано

0

Sustainable Practices in Geotechnical Engineering: Forging Pathways for Resilient Infrastructure DOI Creative Commons
Ali Akbar Firoozi, Ali Asghar Firoozi,

Mohammad Reza Maghami

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105577 - 105577

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0