Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 7, 2025
Язык: Английский
Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 7, 2025
Язык: Английский
Pattern Analysis and Applications, Год журнала: 2025, Номер 28(2)
Опубликована: Март 14, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 30, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 2, 2025
Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical issue accuracy. The Grey Wolf Optimizer (GWO) one more successful swarm intelligence algorithms recent years, its shortcomings have been exposed when facing increasingly complex problems. Therefore, Multi-Strategy Improved (MSIGWO) algorithm has proposed to enhance accuracy magnetic estimation. In initialization phase, Tent chaos mapping introduced population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies accuracy, global search ability. Nonlinear factors better balance exploration exploitation behaviors. Dynamic weight increase diversity samples reduce likelihood optima. Adaptive dimensional learning balances searches, enhancing diversity. Levy flight enhances ability jump out optima ensures CEC2018 benchmark function set 29 problems problems, MSIGWO was tested, statistical indicators Friedman test results show that compared with GWO advanced variants, superior performance. application this proven effectiveness applicability.
Язык: Английский
Процитировано
0Neural Computing and Applications, Год журнала: 2025, Номер unknown
Опубликована: Май 2, 2025
Язык: Английский
Процитировано
0Journal of Marine Science and Engineering, Год журнала: 2025, Номер 13(5), С. 873 - 873
Опубликована: Апрель 27, 2025
The safe and efficient design of dynamic submarine cables is critical for the reliability floating offshore wind turbines, yet traditional time-domain simulation-based optimization approaches are computationally intensive time consuming. To address this challenge, study proposes a closed-loop framework that couples machine learning with intelligent algorithms cable configuration design. A high-fidelity surrogate model based on backpropagation (BP) neural network was trained to accurately predict responses. Three algorithms—Particle Swarm Optimization (PSO), Ivy (IVY), Tornado (TOC)—were evaluated their effectiveness in optimizing arrangement buoyancy weight blocks. TOC algorithm exhibited superior accuracy convergence stability. results show an 18.3% reduction maximum curvature while maintaining allowable effective tension limits. This approach significantly enhances efficiency provides viable strategy systems. Future work will incorporate platform motions induced by turbine operation explore multi-objective schemes further improve performance.
Язык: Английский
Процитировано
0Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 7, 2025
Язык: Английский
Процитировано
0