Measurement, Год журнала: 2021, Номер 187, С. 110289 - 110289
Опубликована: Окт. 15, 2021
Язык: Английский
Measurement, Год журнала: 2021, Номер 187, С. 110289 - 110289
Опубликована: Окт. 15, 2021
Язык: Английский
Data, Год журнала: 2024, Номер 9(2), С. 20 - 20
Опубликована: Янв. 25, 2024
Feature selection is a significant issue in the machine learning process. Most datasets include features that are not needed for problem being studied. These irrelevant reduce both efficiency and accuracy of algorithm. It possible to think about feature as an optimization problem. Swarm intelligence algorithms promising techniques solving this This research paper presents hybrid approach tackling selection. A filter method (chi-square) two wrapper swarm (grey wolf (GWO) particle (PSO)) used different improve system execution time. The performance phases proposed assessed using distinct datasets. results show PSOGWO yields maximum boost 95.3%, while chi2-PSOGWO improvement 95.961% experimental performs better than compared approaches.
Язык: Английский
Процитировано
9IEEE Access, Год журнала: 2021, Номер 9, С. 135697 - 135707
Опубликована: Янв. 1, 2021
Due to the increase in number of patients who died as a result SARS-CoV-2 virus around world, researchers are working tirelessly find technological solutions help doctors their daily work. Fast and accurate Artificial Intelligence (AI) techniques needed assist decisions predict severity mortality risk patient. Early prediction patient would saving hospital resources decrease continual death by providing early medication actions. Currently, X-ray images used symptoms detecting COVID-19 patients. Therefore, this research, model has been built different levels risks for based on applying machine learning techniques. To build proposed model, CheXNet deep pre-trained hybrid handcrafted were applied extract features, two methods: Principal Component Analysis (PCA) Recursive Feature Elimination (RFE) integrated select most important then, six applied. For experiments proved that merging features have selected PCA RFE together (PCA + RFE) achieved best results with all classifiers compared using or individually. The XGBoost classifier performance merged where it accomplished 97% accuracy, 98% precision, 95% recall, 96% f1-score 100% roc-auc. Also, SVM carried out same some minor differences, but overall was good 99% On other hand, Extra Tree 99.6% measures.
Язык: Английский
Процитировано
40Computers in Biology and Medicine, Год журнала: 2022, Номер 144, С. 105344 - 105344
Опубликована: Март 10, 2022
Язык: Английский
Процитировано
26Applied Intelligence, Год журнала: 2023, Номер 53(15), С. 18630 - 18652
Опубликована: Фев. 6, 2023
Язык: Английский
Процитировано
14Measurement, Год журнала: 2021, Номер 187, С. 110289 - 110289
Опубликована: Окт. 15, 2021
Язык: Английский
Процитировано
33