Schizophrenia detection using Entropy Difference-based Electroencephalogram Channel Selection Approach DOI

T. Sunil Kumar,

Shishir Maheshwari, Kandala N. V. P. S. Rajesh

и другие.

Опубликована: Июль 15, 2024

In this work, we propose a novel approach for identifying schizophrenia using an entropy difference (ED)- based electroencephalogram (EEG) channel selection algorithm. At the core of our is ED-based algorithm, which selects most significant EEG channels that contain discriminative information detection values. This process not only but also reduces computational complexity detection. After selecting channels, decompose selected signals into subbands discrete wavelet transform (DWT). Furthermore, extract symmetrically-weighted local binary patterns to capture subband variations. The features are then subjected support vector machine (SVM) differentiate individuals with on their signals. proposed achieves classification accuracy 100% when from one used, outperforming existing approaches in Also, outperforms entropy-based

Язык: Английский

Automated detection and forecasting of COVID-19 using deep learning techniques: A review DOI
Afshin Shoeibi, Marjane Khodatars, Mahboobeh Jafari

и другие.

Neurocomputing, Год журнала: 2024, Номер 577, С. 127317 - 127317

Опубликована: Янв. 26, 2024

Язык: Английский

Процитировано

53

Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses DOI Creative Commons
Ismail BAYDİLİ, Burak Taşçı, Gülay TAŞCI

и другие.

Diagnostics, Год журнала: 2025, Номер 15(4), С. 434 - 434

Опубликована: Фев. 11, 2025

Artificial intelligence (AI) has emerged as a transformative force in psychiatry, improving diagnostic precision, treatment personalization, and early intervention through advanced data analysis techniques. This review explores recent advancements AI applications within focusing on EEG ECG analysis, speech natural language processing (NLP), blood biomarker integration, social media utilization. EEG-based models have significantly enhanced the detection of disorders such depression schizophrenia spectral connectivity analyses. ECG-based approaches provided insights into emotional regulation stress-related conditions using heart rate variability. Speech frameworks, leveraging large (LLMs), improved cognitive impairments psychiatric symptoms nuanced linguistic feature extraction. Meanwhile, analyses deepened our understanding molecular underpinnings mental health disorders, analytics demonstrated potential for real-time surveillance. Despite these advancements, challenges heterogeneity, interpretability, ethical considerations remain barriers to widespread clinical adoption. Future research must prioritize development explainable models, regulatory compliance, integration diverse datasets maximize impact care.

Язык: Английский

Процитировано

1

Staphylococcus Aureus-Related antibiotic resistance detection using synergy of Surface-Enhanced Raman spectroscopy and deep learning DOI
Zakarya Al‐Shaebi,

Fatma Uysal Ciloglu,

Mohammed Nasser

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 91, С. 105933 - 105933

Опубликована: Янв. 10, 2024

Язык: Английский

Процитировано

6

Diagnosis of Schizophrenia in EEG Signals Using dDTF Effective Connectivity and New PreTrained CNN and Transformer Models DOI
Afshin Shoeibi, Marjane Khodatars,

Hamid Alinejad-Rorky

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 150 - 160

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

5

Enhancing robustness of backdoor attacks against backdoor defenses DOI
Bin Hu, Kehua Guo, Sheng Ren

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126355 - 126355

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Application of Transfer Learning for Biomedical Signals: A Comprehensive Review of the Last Decade (2014-2024) DOI Creative Commons
Mahboobeh Jafari, Xiaohui Tao, Prabal Datta Barua

и другие.

Information Fusion, Год журнала: 2025, Номер 118, С. 102982 - 102982

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

0

Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis DOI
Shraddha Jain, Ruchi Srivastava

Brain Topography, Год журнала: 2025, Номер 38(3)

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

A Novel Fusion Framework Combining Graph Embedding Class-Based Convolutional Recurrent Attention Network with Brown Bear Optimization Algorithm for EEG-Based Parkinson’s Disease Recognition DOI
N Shirisha,

Baranitharan Kannan,

Padmanaban Kuppan

и другие.

Journal of Molecular Neuroscience, Год журнала: 2025, Номер 75(1)

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

0

Enhanced classification of motor imagery EEG signals using spatio-temporal representations DOI

Renjie Lv,

Wenwen Chang, Guanghui Yan

и другие.

Information Sciences, Год журнала: 2025, Номер unknown, С. 122221 - 122221

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Addressing data scarcity using audio signal augmentation and deep learning for bolt looseness prediction DOI

Nikesh Chelimilla,

Viswanath Chinthapenta, Srikanth Korla

и другие.

Smart Materials and Structures, Год журнала: 2024, Номер 33(8), С. 085012 - 085012

Опубликована: Июнь 26, 2024

Abstract Deep learning models such as convolutional neural networks (CNNs) encounter challenges, including instability and overfitting, while predicting bolt looseness in data-scarce scenarios. In this study, we proposed a novel audio signal augmentation approach to classify the event of data deficiency using CNN models. Audio signals at varied torque conditions were extracted percussion method. was performed shifting scaling strategies after segmenting signals. The unaugmented augmented transformed into scalograms continuous wavelet transform train Upon training with datasets, promising improvement loss accuracy recognizing noticed. One significant observations from current study is that implementation improved extrinsic generalization ability looseness. A maximum increase 73.5% identify exhibited compared without augmentation. Overall, 94.5% unseen demonstrated upon summary, results affirm empowered predict data-deficient scenarios accurately.

Язык: Английский

Процитировано

3